Skip to yearly menu bar Skip to main content


BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model

song yiran · Qianyu Zhou · Xiangtai Li · Deng-Ping Fan · Xuequan Lu · Lizhuang Ma

Arch 4A-E Poster #292
[ ]
Wed 19 Jun 10:30 a.m. PDT — noon PDT


In this paper, we address the challenge of image resolution variation for the Segment Anything Model (SAM). SAM, known for its zero-shot generalizability, exhibits a performance degradation when faced with datasets with varying image sizes. Previous approaches tend to resize the image to a fixed size or adopt structure modifications, hindering the preservation of SAM's rich prior knowledge. Besides, such task-specific tuning necessitates a complete retraining of the model, which is cost-expensive and unacceptable for deployment in the downstream tasks. In this paper, we reformulate this issue as a length extrapolation problem, where token sequence length varies while maintaining a consistent patch size for images of different sizes. To this end, we propose a Scalable Bias-Mode Attention Mask (BA-SAM) to enhance SAM's adaptability to varying image resolutions while eliminating the need for structure modifications. Firstly, we introduce a new scaling factor to ensure consistent magnitude in the attention layer's dot product values when the token sequence length changes. Secondly, we present a bias-mode attention mask that allows each token to prioritize neighboring information, mitigating the impact of untrained distant information. Our BA-SAM demonstrates efficacy in two scenarios: zero-shot and fine-tuning. Extensive evaluation on diverse datasets, including DIS5K, DUTS, ISIC, COD10K, and COCO, reveals its ability to significantly mitigate performance degradation in the zero-shot setting and achieve state-of-the-art performance with minimal fine-tuning. Furthermore, we propose a generalized model and benchmark, showcasing BA-SAM's generalizability across all four datasets simultaneously.

Live content is unavailable. Log in and register to view live content