Skip to yearly menu bar Skip to main content


Optimal Transport Aggregation for Visual Place Recognition

Sergio Izquierdo · Javier Civera

Arch 4A-E Poster #296
[ ] [ Project Page ]
Thu 20 Jun 5 p.m. PDT — 6:30 p.m. PDT


The task of Visual Place Recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on the aggregation of features extracted from a deep backbone, in order to form a global descriptor for each image. In this context, we introduce SALAD (Sinkhorn Algorithm for Locally Aggregated Descriptors), which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem. In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative, enhancing the overall descriptor quality. Additionally, we leverage and fine-tune DINOv2 as a backbone, which provides enhanced description power for the local features, and dramatically reduces the required training time. As a result, our single-stage method not only surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost. Models and code will be made public upon acceptance and are provided as supplemental material.

Live content is unavailable. Log in and register to view live content