Skip to yearly menu bar Skip to main content


KPConvX: Modernizing Kernel Point Convolution with Kernel Attention

Hugues Thomas · Yao-Hung Hubert Tsai · Timothy Barfoot · Jian Zhang

Arch 4A-E Poster #66
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on multi-layer perceptron encodings. While it initially achieved success, it has since been surpassed by recent MLP networks that employ updated designs and training strategies. Building upon the kernel point principle, we present two novel designs: KPConvD (depthwise KPConv), a lighter design that enables the use of deeper architectures, and KPConvX, an innovative design that scales the depthwise convolutional weights of KPConvD with kernel attention values. Using KPConvX with a modern architecture and training strategy, we are able to outperform current state-of-the-art approaches on the ScanObjectNN, Scannetv2, and S3DIS datasets. We validate our design choices through ablation studies and will release our code and models.

Live content is unavailable. Log in and register to view live content