Skip to yearly menu bar Skip to main content


Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping

Alex Costanzino · Pierluigi Zama Ramirez · Giuseppe Lisanti · Luigi Di Stefano

Arch 4A-E Poster #255
[ ] [ Project Page ]
Thu 20 Jun 5 p.m. PDT — 6:30 p.m. PDT


Recent advancements have shown the potential of leveraging both point clouds and images to localize anomalies. Nevertheless, their applicability in industrial manufacturing is often constrained by significant drawbacks, such as the use of memory banks, which leads to a substantial increase in terms of memory footprint and inference times. We propose a novel light and fast framework that learns to map features from one modality to the other on nominal samples and detect anomalies by pinpointing inconsistencies between observed and mapped features. Extensive experiments show that our approach achieves state-of-the-art detection and segmentation performance in both the standard and few-shot settings on the MVTec 3D-AD dataset while achieving faster inference and occupying less memory than previous multimodal AD methods. Furthermore, we propose a layer pruning technique to improve memory and time efficiency with a marginal sacrifice in performance.

Live content is unavailable. Log in and register to view live content