Skip to yearly menu bar Skip to main content


LeftRefill: Filling Right Canvas based on Left Reference through Generalized Text-to-Image Diffusion Model

Chenjie Cao · Yunuo Cai · Qiaole Dong · Yikai Wang · Yanwei Fu

Arch 4A-E Poster #282
[ ] [ Project Page ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


This paper introduces LeftRefill, an innovative approach to efficiently harness large Text-to-Image (T2I) diffusion models for reference-guided image synthesis. As the name implies, LeftRefill horizontally stitches reference and target views together as a whole input. The reference image occupies the left side, while the target canvas is positioned on the right. Then, LeftRefill paints the right-side target canvas based on the left-side reference and specific task instructions. Such a task formulation shares some similarities with contextual inpainting, akin to the actions of a human painter. This novel formulation efficiently learns both structural and textured correspondence between reference and target without other image encoders or adapters. We inject task and view information through cross-attention modules in T2I models, and further exhibit multi-view reference ability via the re-arranged self-attention modules. These enable LeftRefill to perform consistent generation as a generalized model without requiring test-time fine-tuning or model modifications. Thus, LeftRefill can be seen as a simple yet unified framework to address reference-guided synthesis. As an exemplar, we leverage LeftRefill to address two different challenges: reference-guided inpainting and novel view synthesis, based on the pre-trained StableDiffusion. Codes and models are released at

Live content is unavailable. Log in and register to view live content