Skip to yearly menu bar Skip to main content


EscherNet: A Generative Model for Scalable View Synthesis

Xin Kong · Shikun Liu · Xiaoyang Lyu · Marwan Taher · Xiaojuan Qi · Andrew J. Davison

Arch 4A-E Poster #69
[ ] [ Project Page ]
Thu 20 Jun 10:30 a.m. PDT — noon PDT
Oral presentation: Orals 3A 3D from single view
Thu 20 Jun 9 a.m. PDT — 10:30 a.m. PDT


We introduce EscherNet, a multi-view conditioned diffusion model for view synthesis. EscherNet learns implicit and generative 3D representations coupled with a specialised camera positional encoding, allowing precise and continuous relative control of the camera transformation between an arbitrary number of reference and target views. EscherNet offers exceptional generality, flexibility, and scalability in view synthesis --- it can generate more than 100 consistent target views simultaneously on a single consumer-grade GPU, despite being trained with a fixed number of 3 reference views to 3 target views. As a result, EscherNet not only addresses zero-shot novel view synthesis, but also naturally unifies single- and multi-image 3D reconstruction, combining these diverse tasks into a single, cohesive framework. Our extensive experiments demonstrate that EscherNet achieves state-of-the-art performance in multiple benchmarks, even when compared to methods specifically tailored for each individual problem. This remarkable versatility opens up new directions for designing scalable neural architectures for 3D vision. Project page:

Live content is unavailable. Log in and register to view live content