Skip to yearly menu bar Skip to main content


ECLIPSE: A Resource-Efficient Text-to-Image Prior for Image Generations

Maitreya Patel · Changhoon Kim · Sheng Cheng · Chitta Baral · 'YZ' Yezhou Yang

Arch 4A-E Poster #414
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Text-to-image (T2I) diffusion models, notably the unCLIP models (e.g., DALL-E-2), achieve state-of-the-art (SOTA) performance on various compositional T2I benchmarks, at the cost of significant computational resources. The unCLIP stack comprises T2I prior and diffusion image decoder. The T2I prior model alone adds a billion parameters compared to the Latent Diffusion Models, which increases the computational and high-quality data requirements. We introduce ECLIPSE, a novel contrastive learning method that is both parameter and data-efficient. ECLIPSE leverages pre-trained vision-language models (e.g., CLIP) to distill the knowledge into the prior model. We demonstrate that the ECLIPSE trained prior, with only 3.3% of the parameters and trained on a mere 2.8% of the data, surpasses the baseline T2I priors with an average of 71.6% preference score under resource-limited setting. It also attains performance on par with SOTA larger models, achieving an average of 63.36% preference score in terms of the ability to follow the text compositions. Extensive experiments on two unCLIP diffusion image decoders, Karlo and Kandinsky, affirm that ECLIPSE consistently delivers high performance while significantly reducing resource dependency.

Live content is unavailable. Log in and register to view live content