Skip to yearly menu bar Skip to main content


Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models

Bin Fu · Fanghua Yu · Anran Liu · Zixuan Wang · Jie Wen · Junjun He · Yu Qiao

Arch 4A-E Poster #203
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce labor costs in manual font designs. Most existing FFG methods follow the style-content disentanglement paradigm and employ the Generative Adversarial Network (GAN) to generate target fonts by combining the decoupled content and style representations. The complicated structure and detailed style are simultaneously generated in those methods, which may be the sub-optimal solutions for FFG task. Inspired by most manual font design processes of expert designers, in this paper, we model font generation as a multi-stage generative process. Specifically, as the injected noise and the data distribution in diffusion models can be well-separated into different sub-spaces, we are able to incorporate the font transfer process into these models. Based on this observation, we generalize diffusion methods to model font generative process by separating the reverse diffusion process into three stages with different functions: The structure construction stage first generates the structure information for the target character based on the source image, and the font transfer stage subsequently transforms the source font to the target font. Finally, the font refinement stage enhances the appearances and local details of the target font images. Based on the above multi-stage generative process, we construct our font generation framework, named MSD-Font, with a dual-network approach to generate font images. The superior performance demonstrates the effectiveness of our model. The code is available at: .

Live content is unavailable. Log in and register to view live content