Skip to yearly menu bar Skip to main content


EMOPortraits: Emotion-enhanced Multimodal One-shot Head Avatars

Nikita Drobyshev · Antoni Bigata Casademunt · Konstantinos Vougioukas · Zoe Landgraf · Stavros Petridis · Maja Pantic

Arch 4A-E Poster #359
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Head avatars animated by visual signals have gained popularity, particularly in cross-driving synthesis where the driver differs from the animated character, a challenging but highly practical approach. The recently presented MegaPortraits model has demonstrated state-of-the-art results in this domain. We conduct a deep examination and evaluation of this model, with a particular focus on its latent space for facial expression descriptors, and uncover several limitations with its ability to express intense face motions. To address these limitations, we propose substantial changes in both training pipeline and model architecture, to introduce our EMOPortraits model, where we:Enhance the model's capability to faithfully support intense, asymmetric face expressions, setting a new state-of-the-art result in the emotion transfer task, surpassing previous methods in both metrics and quality.Incorporate speech-driven mode to our model, achieving top-tier performance in audio-driven facial animation, making it possible to drive source identity through diverse modalities, including visual signal, audio, or a blend of both. Furthermore, we propose a novel multi-view video dataset featuring a wide range of intense and asymmetric facial expressions, filling the gap with absence of such data in existing datasets.

Live content is unavailable. Log in and register to view live content