Skip to yearly menu bar Skip to main content


On Scaling Up a Multilingual Vision and Language Model

Xi Chen · Josip Djolonga · Piotr Padlewski · Basil Mustafa · Soravit Changpinyo · Jialin Wu · Carlos Riquelme Ruiz · Sebastian Goodman · Xiao Wang · Yi Tay · Siamak Shakeri · Mostafa Dehghani · Daniel Salz · Mario Lučić · Michael Tschannen · Arsha Nagrani · Hexiang Hu · Mandar Joshi · Bo Pang · Ceslee Montgomery · Paulina Pietrzyk · Marvin Ritter · AJ Piergiovanni · Matthias Minderer · Filip Pavetic · Austin Waters · Gang Li · Ibrahim Alabdulmohsin · Lucas Beyer · Julien Amelot · Kenton Lee · Andreas Steiner · Yang Li · Daniel Keysers · Anurag Arnab · Yuanzhong Xu · Keran Rong · Alexander Kolesnikov · Mojtaba Seyedhosseini · Anelia Angelova · Xiaohua Zhai · Neil Houlsby · Radu Soricut

Arch 4A-E Poster #462
[ ]
Thu 20 Jun 10:30 a.m. PDT — noon PDT


We explore the boundaries of scaling up a multilingual vision and language model, both in terms of size of the components and the breadth of its training task mixture. Our model achieves new levels of performance on a wide-range of varied and complex tasks, including multiple image-based captioning and question-answering tasks, image-based document understanding and few-shot (in-context) learning, as well as object detection, video question answering, and video captioning. Our model advances the state-of-the-art on most vision-and-language benchmarks considered (20+ of them). Finally, we observe emerging capabilities, such as complex counting and multilingual object detection, tasks that are not explicitly in the training mix.

Live content is unavailable. Log in and register to view live content