Skip to yearly menu bar Skip to main content


PDF: A Probability-Driven Framework for Open World 3D Point Cloud Semantic Segmentation

Jinfeng Xu · Siyuan Yang · Xianzhi Li · Yuan Tang · yixue Hao · Long Hu · Min Chen

Arch 4A-E Poster #113
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Existing point cloud semantic segmentation networks cannot identify unknown classes and update their knowledge, due to a closed-set and static perspective of the real world, which would induce the intelligent agent to make bad decisions. To address this problem, we propose a Probability-Driven Framework (PDF) for open world semantic segmentation that includes (i) a lightweight U-decoder branch to identify unknown classes by estimating the uncertainties, (ii) a flexible pseudo-labeling scheme to supply geometry features along with probability distribution features of unknown classes by generating pseudo labels, and (iii) an incremental knowledge distillation strategy to incorporate novel classes into the existing knowledge base gradually. Our framework enables the model to behave like human beings, which could recognize unknown objects and incrementally learn them with the corresponding knowledge. Experimental results on the S3DIS and ScanNetv2 datasets demonstrate that the proposed PDF outperforms other methods by a large margin in both important tasks of open world semantic segmentation.

Live content is unavailable. Log in and register to view live content