Skip to yearly menu bar Skip to main content


Color Shift Estimation-and-Correction for Image Enhancement

Yiyu Li · Ke Xu · Gerhard Hancke · Rynson W.H. Lau

Arch 4A-E Poster #122
[ ]
Fri 21 Jun 5 p.m. PDT — 6:30 p.m. PDT


Images captured under sub-optimal illumination conditions may contain both over- and under-exposures. Current approaches mainly focus on adjusting image brightness, which may exacerbate the color tone distortion in under-exposed areas and fail to restore accurate colors in over-exposed regions. We observe that under-exposed and over-exposed regions display opposite color tone distribution shifts with respect to each other, which may not be easily normalized in joint modeling as they usually do not have ``normal-exposed'' regions/pixels as reference. In this paper, we propose a novel method to enhance images with both over- and under-exposures by learning to estimate and correct such color shifts. Specifically, we first derive the color feature maps of the brightened and darkened versions of the input image via a UNet-based network, followed by a pseudo-normal feature generator to produce pseudo-normal color feature maps. We then propose a novel COlor Shift Estimation (COSE) module to estimate the color shifts between the derived brightened (or darkened) color feature maps and the pseudo-normal color feature maps. The COSE module corrects the estimated color shifts of the over- and under-exposed regions separately. We further propose a novel COlor MOdulation (COMO) module to modulate the separately corrected colors in the over- and under-exposed regions to produce the enhanced image. Comprehensive experiments show that our method outperforms existing approaches. We will release our codes.

Live content is unavailable. Log in and register to view live content