Skip to yearly menu bar Skip to main content


InstructVideo: Instructing Video Diffusion Models with Human Feedback

Hangjie Yuan · Shiwei Zhang · Xiang Wang · Yujie Wei · Tao Feng · Yining Pan · Yingya Zhang · Ziwei Liu · Samuel Albanie · Dong Ni

Arch 4A-E Poster #162
[ ]
Wed 19 Jun 5 p.m. PDT — 6:30 p.m. PDT


Diffusion models have emerged as the de facto paradigm for video generation. However, their reliance on web-scale data of varied quality often yields results that are visually unappealing and misaligned with the textual prompts. To tackle this problem, we propose InstructVideo to instruct text-to-video diffusion models with human feedback by reward fine-tuning. InstructVideo has two key ingredients: 1) To ameliorate the cost of reward fine-tuning induced by generating through the full DDIM sampling chain, we recast reward fine-tuning as editing. By leveraging the diffusion process to corrupt a sampled video, InstructVideo requires only partial inference of the DDIM sampling chain, reducing fine-tuning cost while improving fine-tuning efficiency. 2) To mitigate the absence of a dedicated video reward model for human preferences, we repurpose established image reward models, e.g., HPSv2. To this end, we propose Segmental Video Reward, a mechanism to provide reward signals based on segmental sparse sampling, and Temporally Attenuated Reward, a method that mitigates temporal modeling degradation during fine-tuning. Extensive experiments, both qualitative and quantitative, validate the practicality and efficacy of using image reward models in InstructVideo, significantly enhancing the visual quality of generated videos without compromising generalization capabilities. Code and models can be accessed through our project page

Live content is unavailable. Log in and register to view live content