Skip to yearly menu bar Skip to main content


HyperSDFusion: Bridging Hierarchical Structures in Language and Geometry for Enhanced 3D Text2Shape Generation

Zhiying Leng · Tolga Birdal · Xiaohui Liang · Federico Tombari

Arch 4A-E Poster #16
[ ]
Fri 21 Jun 10:30 a.m. PDT — noon PDT


3D shape generation from text is a fundamental task in 3D representation learning. The text-shape pairs exhibit a hierarchical structure, where a general text like "chair" covers all 3D shapes of the chair, while more detailed prompts refer to more specific shapes. Furthermore, both text and 3D shapes are inherently hierarchical structures. However, existing Text2Shape methods, such as SDFusion, do not exploit that. In this work, we propose HyperSDFusion, a dual-branch diffusion model that generates 3D shapes from a given text. Since hyperbolic space is suitable for handling hierarchical data, we propose to learn the hierarchical representations of text and 3D shapes in hyperbolic space. First, we introduce a hyperbolic text-image encoder to learn the sequential and multi-modal hierarchical features of text in hyperbolic space. In addition, we design a hyperbolic text-graph convolution module to learn the hierarchical features of text in hyperbolic space. In order to fully utilize these text features, we introduce a dual-branch structure to embed text features in 3D feature space. At last, to endow the generated 3D shapes with a hierarchical structure, we devise a hyperbolic hierarchical loss. Our method is the first to explore the hyperbolic hierarchical representation for text-to-shape generation. Experimental results on the existing text-to-shape paired dataset, Text2Shape, achieved state-of-the-art results.

Live content is unavailable. Log in and register to view live content