Skip to yearly menu bar Skip to main content


Compressed 3D Gaussian Splatting for Accelerated Novel View Synthesis

Simon Niedermayr · Josef Stumpfegger · rĂ¼diger westermann

Arch 4A-E Poster #65
[ ] [ Project Page ]
Thu 20 Jun 10:30 a.m. PDT — noon PDT

Abstract: Recently, high-fidelity scene reconstruction with an optimized 3D Gaussian splat representation has been introduced for novel view synthesis from sparse image sets. Making such representations suitable for applications like network streaming and rendering on low-power devices requires significantly reduced memory consumption as well as improved rendering efficiency.We propose a compressed 3D Gaussian splat representation that utilizes sensitivity-aware vector clustering with quantization-aware training to compress directional colors and Gaussian parameters. The learned codebooks have low bitrates and achieve a compression rate of up to $31\times$ on real-world scenes with only minimal degradation of visual quality.We demonstrate that the compressed splat representation can be efficiently rendered with hardware rasterization on lightweight GPUs at up to $4\times$ higher framerates than reported via an optimized GPU compute pipeline.Extensive experiments across multiple datasets demonstrate the robustness and rendering speed of the proposed approach.

Live content is unavailable. Log in and register to view live content