Poster

HNeRV: A Hybrid Neural Representation for Videos

Hao Chen · Matthew Gwilliam · Ser-Nam Lim · Abhinav Shrivastava

West Building Exhibit Halls ABC 195

Abstract:

Implicit neural representations store videos as neural networks and have performed well for vision tasks such as video compression and denoising. With frame index and/or positional index as input, implicit representations (NeRV, E-NeRV, etc.) reconstruct video frames from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where learnable and content-adaptive embeddings act as decoder input. Besides the input embedding, we introduce a HNeRV block to make model parameters evenly distributed across the entire network, therefore higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embedding and re-designed model architecture, HNeRV outperforms implicit methods (NeRV, E-NeRV) in video regression task for both reconstruction quality and convergence speed, and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs (H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting.

Chat is not available.