Poster

RealFusion: 360° Reconstruction of Any Object From a Single Image

Luke Melas-Kyriazi · Iro Laina · Christian Rupprecht · Andrea Vedaldi

West Building Exhibit Halls ABC 021

Abstract:

We consider the problem of reconstructing a full 360° photographic model of an object from a single image of it. We do so by fitting a neural radiance field to the image, but find this problem to be severely ill-posed. We thus take an off-the-self conditional image generator based on diffusion and engineer a prompt that encourages it to “dream up” novel views of the object. Using the recent DreamFusion method, we fuse the given input view, the conditional prior, and other regularizers in a final, consistent reconstruction. We demonstrate state-of-the-art reconstruction results on benchmark images when compared to prior methods for monocular 3D reconstruction of objects. Qualitatively, our reconstructions provide a faithful match of the input view and a plausible extrapolation of its appearance and 3D shape, including to the side of the object not visible in the image.

Chat is not available.