Skip to yearly menu bar Skip to main content


Learning Multi-Modal Class-Specific Tokens for Weakly Supervised Dense Object Localization

Lian Xu · Wanli Ouyang · Mohammed Bennamoun · Farid Boussaid · Dan Xu

West Building Exhibit Halls ABC 296


Weakly supervised dense object localization (WSDOL) relies generally on Class Activation Mapping (CAM), which exploits the correlation between the class weights of the image classifier and the pixel-level features. Due to the limited ability to address intra-class variations, the image classifier cannot properly associate the pixel features, leading to inaccurate dense localization maps. In this paper, we propose to explicitly construct multi-modal class representations by leveraging the Contrastive Language-Image Pre-training (CLIP), to guide dense localization. More specifically, we propose a unified transformer framework to learn two-modalities of class-specific tokens, i.e., class-specific visual and textual tokens. The former captures semantics from the target visual data while the latter exploits the class-related language priors from CLIP, providing complementary information to better perceive the intra-class diversities. In addition, we propose to enrich the multi-modal class-specific tokens with sample-specific contexts comprising visual context and image-language context. This enables more adaptive class representation learning, which further facilitates dense localization. Extensive experiments show the superiority of the proposed method for WSDOL on two multi-label datasets, i.e., PASCAL VOC and MS COCO, and one single-label dataset, i.e., OpenImages. Our dense localization maps also lead to the state-of-the-art weakly supervised semantic segmentation (WSSS) results on PASCAL VOC and MS COCO.

Chat is not available.