Skip to yearly menu bar Skip to main content


Poster

CDMAD: Class-Distribution-Mismatch-Aware Debiasing for Class-Imbalanced Semi-Supervised Learning

Hyuck Lee · Heeyoung Kim


Abstract:

Pseudo-label-based semi-supervised learning (SSL) algorithms trained on a class-imbalanced set face two cascading challenges: 1) Classifiers tend to be biased towards majority classes, and 2) Biased pseudo-labels are used for training. It is difficult to appropriately re-balance the classifiers in SSL because the class distribution of an unlabeled set is often unknown and could be mismatched with that of a labeled set. We propose a novel class-imbalanced SSL algorithm called class-distribution-mismatch-aware debiasing (CDMAD). For each iteration of training, CDMAD first assesses the classifier's biased degree towards each class by calculating the logits on an image without any patterns (e.g., solid color image), which can be considered irrelevant to the training set. CDMAD then refines biased pseudo-labels of the base SSL algorithm by ensuring the classifier's neutrality. CDMAD uses these refined pseudo-labels during the training of the base SSL algorithm to improve the quality of the representations. In the test phase, CDMAD similarly refines biased class predictions on test samples. CDMAD can be seen as an extension of post-hoc logit adjustment to address a challenge of incorporating the unknown class distribution of the unlabeled set for re-balancing the biased classifier under class distribution mismatch. CDMAD ensures Fisher consistency for the balanced error. Extensive experiments verify the effectiveness of CDMAD.

Live content is unavailable. Log in and register to view live content