Skip to yearly menu bar Skip to main content


Poster

SoftVQ-VAE: Efficient 1-Dimensional Continuous Tokenizer

Hao Chen · Ze Wang · Xiang Li · Ximeng Sun · Fangyi Chen · Jiang Liu · Jindong Wang · Bhiksha Raj · Zicheng Liu · Emad Barsoum


Abstract: Efficient image tokenization with high compression ratios remains a critical challenge for training generative models.We present SoftVQ-VAE, a continuous image tokenizer that leverages soft categorical posteriors to aggregate multiple codewords into each latent token, substantially increasing the representation capacity of the latent space. When applied to Transformer-based architectures, our approach compresses 256×256 and 512×512 images using only 32 or 64 1-dimensional tokens.Not only does SoftVQ-VAE show consistent and high-quality reconstruction, more importantly, it also achieves state-of-the-art and significantly faster image generation results across different denoising-based generative models. Remarkably, SoftVQ-VAE improves inference throughput by up to 18x for generating 256×256 images and 55x for 512×512 images while achieving competitive FID scores of 1.78 and 2.21 for SiT-XL.It also improves the training efficiency of the generative models by reducing the number of training iterations by 2.3x while maintaining comparable performance. With its fully-differentiable design and semantic-rich latent space, our experiment demonstrates that SoftVQ-VQE achieves efficient tokenization without compromising generation quality, paving the way for more efficient generative models.Code and model will be released.

Live content is unavailable. Log in and register to view live content