Poster
MAP: Unleashing Hybrid Mamba-Transformer Vision Backbone's Potential with Masked Autoregressive Pretraining
Yunze Liu ยท Li Yi
Hybrid Mamba-Transformer networks have recently garnered broad attention. These networks can leverage the scalability of Transformers while capitalizing on Mamba's strengths in long-context modeling and computational efficiency. However, the challenge of effectively pretraining such hybrid networks remains an open question. Existing methods, such as Masked Autoencoders (MAE) or autoregressive (AR) pretraining, primarily focus on single-type network architectures. In contrast, pretraining strategies for hybrid architectures must be effective for both Mamba and Transformer components. Based on this, we propose Masked Autoregressive Pretraining (MAP) to pretrain a hybrid Mamba-Transformer vision backbone network. This strategy combines the strengths of both MAE and Autoregressive pretraining, improving the performance of Mamba and Transformer modules within a unified paradigm. Experimental results show that the hybrid Mamba-Transformer vision backbone network pretrained with MAP significantly outperforms other pretraining strategies, achieving state-of-the-art performance. We validate the method's effectiveness on both 2D and 3D datasets and provide detailed ablation studies to support the design choices for each component. We will release the code and checkpoints.
Live content is unavailable. Log in and register to view live content