Skip to yearly menu bar Skip to main content


Poster

UniNet: A Contrastive Learning-guided Unified Framework with Feature Selection for Anomaly Detection

Shun Wei · Jielin Jiang · Xiaolong Xu


Abstract:

Anomaly detection (AD) is a crucial visual task aimed at recognizing abnormal pattern within samples. However, most existing AD methods suffer from limited generalizability, as they are primarily designed for domain-specific applications, such as industrial scenarios, and often perform poorly when applied to other domains. This challenge largely stems from the inherent discrepancies in features across domains. To bridge this domain gap, we introduce UniNet, a generic unified framework that incorporates effective feature selection and contrastive learning-guided anomaly discrimination. UniNet comprises student-teacher models and a bottleneck, featuring several vital innovations: First, we propose domain-related feature selection, where the student is guided to select and focus on representative features from the teacher with domain-relevant priors, while restoring them effectively. Second, a similarity contrastive loss function is developed to strengthen the correlations among homogeneous features. Meanwhile, a margin loss function is proposed to enforce the separation between the similarities of abnormality and normality, effectively improving the model's ability to discriminate anomalies. Third, we propose a weighted decision mechanism for dynamically evaluating the anomaly score to achieve robust AD. Large-scale experiments on 11 datasets from various domains show that UniNet surpasses state-of-the-art methods.

Live content is unavailable. Log in and register to view live content