Skip to yearly menu bar Skip to main content


Poster

F-LMM: Grounding Frozen Large Multimodal Models

Size Wu · Sheng Jin · Wenwei Zhang · Lumin Xu · Wentao Liu · Wei Li · Chen Change Loy


Abstract:

Endowing Large Multimodal Models (LMMs) with visual grounding capability can significantly enhance AIs' understanding of the visual world and their interaction with humans. However, existing methods typically fine-tune the parameters of LMMs to learn additional segmentation tokens and overfit grounding and segmentation datasets. Such a design would inevitably cause a catastrophic diminution in the indispensable conversational capability of general AI assistants. In this paper, we comprehensively evaluate state-of-the-art grounding LMMs across a suite of multimodal question-answering benchmarks, observing drastic performance drops that indicate vanishing general knowledge comprehension and weakened instruction following ability. To address this issue, we present F-LMM---grounding \emph{frozen} off-the-shelf LMMs in human-AI conversations---a straightforward yet effective design based on the fact that word-pixel correspondences conducive to visual grounding inherently exist in the attention mechanism of well-trained LMMs. Using only a few trainable CNN layers, we can translate word-pixel attention weights to mask logits, which a SAM-based mask refiner can further optimise. Our F-LMM neither learns special segmentation tokens nor utilises high-quality grounded instruction-tuning data, but achieves competitive performance on referring expression segmentation and panoptic narrative grounding benchmarks while completely preserving LMMs' original conversational ability. Additionally, with instruction-following ability preserved and grounding ability obtained, our F-LMM can be directly applied to complex tasks like reasoning segmentation, grounded conversation generation and visual chain-of-thought reasoning.

Live content is unavailable. Log in and register to view live content