Poster
Minding Fuzzy Regions: A Data-driven Alternating Learning Paradigm for Stable Lesion Segmentation
Lexin Fang · Yunyang Xu · Xiang Ma · Xuemei Li · Caiming Zhang
Deep learning has achieved significant advancements in medical image segmentation, but existing models still face challenges in accurately segmenting lesion regions. The main reason is that some lesion regions in medical images have unclear boundaries, irregular shapes, and small tissue density differences, leading to label ambiguity. However, the existing model treats all data equally without taking quality differences into account in the training process, resulting in noisy labels negatively impacting model training and unstable feature representations. In this paper, a data-driven alternate learning (DALE) paradigm is proposed to optimize the model's training process, achieving stable and high-precision segmentation. The paradigm focuses on two key points: (1) reducing the impact of noisy labels, and (2) calibrating unstable representations. To mitigate the negative impact of noisy labels, a loss consistency-based collaborative optimization method is proposed, and its effectiveness is theoretically demonstrated. Specifically, the label confidence parameters are introduced to dynamically adjust the influence of labels of different confidence levels during model training, thus reducing the influence of noise labels. To calibrate the learning bias of unstable representations, a distribution alignment method is proposed. This method restores the underlying distribution of unstable representations, thereby enhancing the discriminative capability of fuzzy region representations. Extensive experiments on various benchmarks and model backbones demonstrate the superiority of the DALE paradigm, achieving an average performance improvement of up to 7.16%.
Live content is unavailable. Log in and register to view live content