Skip to yearly menu bar Skip to main content


Poster

DiSRT-In-Bed: Diffusion-Based Sim-to-Real Transfer Framework for In-Bed Human Mesh Recovery

Jing Gao · Ce Zheng · Laszlo Jeni · Zackory Erickson


Abstract:

In-bed human mesh recovery can be crucial and enabling for several healthcare applications, including sleep pattern monitoring, rehabilitation support, and pressure ulcer prevention. However, it is difficult to collect large real-world visual datasets in this domain, in part due to privacy and expense constraints, which in turn presents significant challenges for training and deploying deep learning models. Existing in-bed human mesh estimation methods often rely heavily on real-world data, limiting their ability to generalize across different in-bed scenarios, such as varying coverings and environmental settings. To address this, we propose a Sim-to-Real Transfer Framework for in-bed human mesh recovery from overhead depth images, which leverages large-scale synthetic data alongside limited or no real-world samples. We introduce a diffusion model that bridges the gap between synthetic data and real data to support generalization in real-world in-bed pose and body inference scenarios. Extensive experiments and ablation studies validate the effectiveness of our framework, demonstrating significant improvements in robustness and adaptability across diverse healthcare scenarios.

Live content is unavailable. Log in and register to view live content