Skip to yearly menu bar Skip to main content


Poster

Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision

Jinneyong Kim ยท Seung-Hwan Baek


Abstract:

Integrating RGB and NIR imaging provides complementary spectral information, enhancing robotic vision in challenging lighting conditions. However, existing datasets and imaging systems lack pixel-level alignment between RGB and NIR images, posing challenges for downstream tasks.In this paper, we develop a robotic vision system equipped with two pixel-aligned RGB-NIR stereo cameras and a LiDAR sensor mounted on a mobile robot. The system simultaneously captures RGB stereo images, NIR stereo images, and temporally synchronized LiDAR point cloud. Utilizing the mobility of the robot, we present a dataset containing continuous video frames with pixel-aligned RGB and NIR stereo pairs under diverse lighting conditions.We introduce two methods that utilize our pixel-aligned RGB-NIR images: an RGB-NIR image fusion method and a feature fusion method. The first approach enables existing RGB-pretrained vision models to directly utilize RGB-NIR information without fine-tuning. The second approach fine-tunes existing vision models to more effectively utilize RGB-NIR information.Experimental results demonstrate the effectiveness of using pixel-aligned RGB-NIR images across diverse lighting conditions.

Live content is unavailable. Log in and register to view live content