Skip to yearly menu bar Skip to main content


Poster

Finsler Multi-Dimensional Scaling: Manifold Learning for Asymmetric Dimensionality Reduction and Embedding

Thomas Dagès · Simon Weber · Ya-Wei Eileen Lin · Ronen Talmon · Daniel Cremers · Michael Lindenbaum · Alfred M. Bruckstein · Ron Kimmel


Abstract:

Dimensionality reduction is a fundamental task that aims to simplify complex data by reducing its feature dimensionality while preserving essential patterns, with core applications in data analysis and visualisation. To preserve the underlying data structure, multi-dimensional scaling (MDS) methods focus on preserving pairwise dissimilarities, such as distances. They optimise the embedding to have pairwise distances as close as possible to the data dissimilarities. However, the current standard is limited to embedding data in Riemannian manifolds. Motivated by the lack of asymmetry in the Riemannian metric of the embedding space, this paper extends the MDS problem to a natural asymmetric generalisation of Riemannian manifolds called Finsler manifolds. Inspired by Euclidean spaces, we define a canonical Finsler space for embedding asymmetric data. Due to its simplicity with respect to geodesics, data representation in this space is both intuitive and simple to analyse. We demonstrate that our generalisation benefits from the same theoretical convergence guarantees. We reveal the effectiveness of our Finsler embedding across various types of non-symmetric data, highlighting its value in applications such as data visualisation, dimensionality reduction, directed graph embedding, and link prediction.

Live content is unavailable. Log in and register to view live content