Skip to yearly menu bar Skip to main content


Poster

Forming Auxiliary High-confident Instance-level Loss to Promote Learning from Label Proportions

Tianhao Ma · Han Chen · Juncheng Hu · Yungang Zhu · Ximing Li


Abstract:

Learning from label proportions (LLP), i.e. a challenging weakly-supervised learning task, aims to train a classifier by using bags of instances and the proportions of classes within bags, rather than annotated labels for each instance. Beyond the traditional bag-level loss, the mainstream methodology of LLP is to incorporate an auxiliary instance-level loss with pseudo-labels formed by predictions. Unfortunately, we empirically observed that the pseudo-labels are often inaccurate and even meaningless, especially for the scenarios with large bag sizes, hurting the classifier induction. To alleviate this problem, we suggest a novel LLP method, namely Learning Label Proportions with Auxiliary High-confident Instance-level Loss (L^2P-AHIL). Specifically, we propose a dual entropy-based weight (DEW) method to adaptively measure the confidences of pseudo-labels. It simultaneously emphasizes accurate predictions at the bag level and avoids smoothing predictions, which tend to be meaningless. We then form high-confident instance-level loss with DEW, and jointly optimize it with the bag-level loss in a self-training manner. The experimental results on benchmark datasets show that L^2P-AHIL can surpass the existing baseline methods, and the performance gain can be more significant as the bag size increases.

Live content is unavailable. Log in and register to view live content