Skip to yearly menu bar Skip to main content




CVPR 2024 Career Website

The CVPR 2024 conference is not accepting applications to post at this time.

Here we highlight career opportunities submitted by our Exhibitors, and other top industry, academic, and non-profit leaders. We would like to thank each of our exhibitors for supporting CVPR 2024. Opportunities can be sorted by job category, location, and filtered by any other field using the search box. For information on how to post an opportunity, please visit the help page, linked in the navigation bar above.

Search Opportunities

London


Who are we?

Our team is the first in the world to use autonomous vehicles on public roads using end-to-end deep learning, computer vision and reinforcement learning. Leveraging our multi-national world-class team of researchers and engineers, we’re using data to learn more intelligent algorithms to bring autonomy for everyone, everywhere. We aim to be the future of self-driving cars, learning from experience and data.

Where you’ll have an impact

We are currently looking for people with research expertise in AI applied to autonomous driving or similar robotics or decision making domain, inclusive, but not limited to the following specific areas:

Foundation models for robotics Model-free and model-based reinforcement learning Offline reinforcement learning Large language models Planning with learned models, model predictive control and tree search Imitation learning, inverse reinforcement learning and causal inference Learned agent models: behavioral and physical models of cars, people, and other dynamic agents You'll be working on some of the world's hardest problems, and able to attack them in new ways. You'll be a key member of our diverse, cross-disciplinary team, helping teach our robots how to drive safely and comfortably in complex real-world environments. This encompasses many aspects of research across perception, prediction, planning, and control, including:

How to leverage our large, rich, and diverse sources of real-world driving data How to architect our models to best employ the latest advances in foundation models, transformers, world models, etc. Which learning algorithms to use (e.g. reinforcement learning, behavioural cloning) How to leverage simulation for controlled experimental insight, training data augmentation, and re-simulation How to scale models efficiently across data, model size, and compute, while maintaining efficient deployment on the car You also have the potential to contribute to academic publications for top-tier conferences like NeurIPS, CVPR, ICRA, ICLR, CoRL etc. working in a world-class team to achieve this.

What you’ll bring to Wayve

Thorough knowledge of and 5+ years applied experience in AI research, computer vision, deep learning, reinforcement learning or robotics Ability to deliver high quality code and familiarity with deep learning frameworks (Python and Pytorch preferred) Experience leading a research agenda aligned with larger goals Industrial and / or academic experience in deep learning, software engineering, automotive or robotics Experience working with training data, metrics, visualisation tools, and in-depth analysis of results Ability to understand, author and critique cutting-edge research papers Familiarity with code-reviewing, C++, Linux, Git is a plus PhD in a relevant area and / or track records of delivering value through machine learning are a big plus. What we offer you

Attractive compensation with salary and equity Immersion in a team of world-class researchers, engineers and entrepreneurs A unique position to shape the future of autonomy and tackle the biggest challenge of our time Bespoke learning and development opportunities Relocation support with visa sponsorship Flexible working hours - we trust you to do your job well, at times that suit you and your time Benefits such as an onsite chef, workplace nursery scheme, private health insurance, therapy, daily yoga, onsite bar, large social budgets, unlimited L&D requests, enhanced parental leave, and more!


Apply

Location San Diego


Description

At Qualcomm, we are transforming the automotive industry with our Snapdragon Digital Chassis and building the next generation software defined vehicle (SDV).

Snapdragon Ride is an integral pillar of our Snapdragon Digital Chassis, and since its launch it has gained momentum with a growing number of global automakers and Tier1 suppliers. Snapdragon Ride aims to address the complexity of autonomous driving and ADAS by leveraging its high-performance, power-efficient SoC, industry-leading artificial intelligence (AI) technologies and pioneering vision and drive policy stack to deliver a comprehensive, cost and energy efficient systems solution.

Enabling safe, comfortable, and affordable autonomous driving includes solving some of the most demanding and challenging technological problems. From centimeter-level localization to multimodal sensor perception, sensor fusion, behavior prediction, maneuver planning, and trajectory planning and control, each one of these functions introduces its own unique challenges to solve, verify, test, and deploy on the road.

We are looking for smart, innovative and motivated individuals with strong theory background in deep learning, advanced signal processing, probability & algorithms and good implementation skills in python/C++. Job responsibilities include design and development of novel algorithms for solving complex problems related to behavior prediction for autonomous driving, including trajectory and intention prediction. Develop novel deep learning models to predict trajectories for road users and optimize them to run-in real-time systems. Work closely with sensor fusion and planning team on defining requirements and KPIs. Work closely with test engineers to develop test plans for validating performance in simulations and real-world testing.

Minimum Qualifications: • Bachelor's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 6+ years of Systems Engineering or related work experience. OR Master's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 5+ years of Systems Engineering or related work experience. OR PhD in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 4+ years of Systems Engineering or related work experience.Preferred Qualifications: Ph.D + 2 years industry experience in behavior and trajectory prediction Proficient in variety of deep learning models like CNN, Transformer, RNN, LSTM, VAE, GraphCNN etc Experience working with NLP Deep Learning Networks Proficient in state of the art in machine learning tools (pytorch, tensor flow) 3+ years of experience with Programming Language such as C, C++, Python, etc. 3+ years Systems Engineering, or related work experience in the area of behavior and trajectory prediction. Experience working with, modifying, and creating advanced algorithms Analytical and scientific mindset, with the ability to solve complex problems. Experience in Autonomous driving, Robotics, XR/AR/VR Experience with robust software design for safety-critical systems Excellent written and verbal communication skills, ability to work with a cross-functional team


Apply

Location Seattle, WA Palo Alto, CA


Description Amazon’s product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on an AI-first initiative to continue to improve the way we do search through the use of large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced multi-modal deep-learning models on very large scale datasets, specifically through the use of advanced systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge Computer Vision and Deep Learning technologies and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: * How can multi-modal inputs in deep-learning models help us deliver delightful shopping experiences to millions of Amazon customers? * Can combining multi-modal data and very large scale deep-learning models help us provide a step-function improvement to the overall model understanding and reasoning capabilities? We are looking for exceptional scientists who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization.


Apply

London


Who we are Established in 2017, Wayve is a leader in autonomous vehicle technology, driven by breakthroughs in Embodied AI. Our intelligent, mapless, and hardware-agnostic technologies empower vehicles to navigate complex environments effortlessly.

Supported by prominent investors, Wayve is advancing the transition from assisted to fully automated driving, making transportation safer, more efficient, and universally accessible. Join our world-class, multinational team of engineers and researchers as we push the boundaries of frontier AI and autonomous driving, creating impactful technologies and products on a global scale

Where you will have an impact We're looking for an experienced Applied Scientist with expertise in Neural Radiance Fields (NeRFs) and Gaussian Splatting to join our Vision & Graphics team and advance our innovative neural simulator, Ghost Gym. This role is central to improving Ghost Gym's capabilities, utilizing state-of-the-art neural rendering techniques to craft photorealistic 4D worlds. You'll be at the forefront of developing and applying groundbreaking research to generate thousands of simulated scenarios. These scenarios are critical for training, testing, and debugging our end-to-end AI driving models, contributing significantly to the creation of safe and reliable AI driving technology. Your work will focus on improving the efficiency, realism, and dynamism of our simulations, especially for dynamic and outdoor environments, pushing the limits of current photorealistic visualization technologies.

Challenges you will own Conducting cutting-edge research in NeRFs, Gaussian splatting, and related technologies, with a focus on solving real-world challenges in 3D rendering Developing and implementing algorithms for efficient, high-quality 3D scene reconstruction and rendering, particularly for dynamic and outdoor environments Collaborating with cross-functional teams to integrate research findings into scalable, production-level solutions Staying abreast of the latest developments in the field, evaluating and incorporating state-of-the-art techniques into our workflows Potentially finding opportunities to publish research findings in top-tier journals and conferences, contributing to the scientific community and establishing Wayve as a leader in the field What you will bring to Wayve Essential Proven track record of research in NeRFs, Gaussian splatting, or closely related areas, demonstrated through publications or deployed applications Strong programming skills in Python with experience in deep learning frameworks such as PyTorch Solid foundation in mathematics and physics underlying 3D graphics and rendering techniques Excellent problem-solving skills and the ability to work independently as well as in a team environment Demonstrated ability to work collaboratively in a fast-paced, innovative, interdisciplinary team environment

Desirable Experience with dynamic scene reconstruction and rendering, particularly in outdoor environments Familiarity with parallel computing, GPU programming, and optimization techniques PhD or MSc in Computer Science, Computer Engineering, or a related field, with a focus on computer graphics, computer vision, or machine learning What we offer you The chance to be part of a truly mission driven organisation and an opportunity to shape the future of autonomous driving. Unlike our competitors, Wayve is still relatively small and nimble, giving you the chance to make a huge impact Competitive compensation and benefits A dynamic and fast-paced work environment in which you will grow every day - learning on the job, from the brightest minds in our space, and with support for more formal learning opportunities too A culture that is ego-free, respectful and welcoming (of you and your dog) - we even eat lunch together every day


Apply

Tokyo, Tokyo-to, Japan


Overview As one of the world's leading industrial research laboratories, Microsoft Research (MSR) has more than 1,000 researchers and engineers working across the globe. In the past 30 years, Microsoft scientists have not only carried out world-class computer science research, but also transferred the advanced technologies into our products and services that have changed millions of people’s lives and ensured that Microsoft is at the forefront of digital transformation.

Part of Microsoft Research, Microsoft Research Asia (MSR Asia), established in 1998, is a leading research lab with major sites in Beijing, Shanghai and Vancouver. Over the years, technologies developed by MSR Asia have made a significant impact within Microsoft and also around the world, and new, innovative technologies are constantly being born from the lab. As one of the world-class research labs, MSRA offers an exhilarating, supportive, open and inclusive environment for top talents to create the future through their disruptive and cutting-edge research. (More information about Microsoft Research Lab - Asia - Microsoft Research).

Along with business growth, Microsoft Research Asia (MSRA) is increasing its presence in Japan, and looking for a Principal Research Manager who specializes in AI with an emphasis on Embodied AI and Robotics, AI Model innovations (NLP, vision, multi-modality), Societal AI, Wireless sensing, and Wellbeing. This is a unique opportunity to lead an ambitious research agenda and work with various teams to explore new applications of those research areas.

Responsibilities •As a leading and accomplished expert in a broad research area (e.g., Embodied AI and Robotics, AI Model, Multimedia and Vision), has a comprehensive understanding of the relevant literature, research methods, and business and academic context. •Defines and articulates a clear long-term research vision that is in line with MSRA strategic focus and drive research agenda landing with planned schedule •As a local representative, fosters cooperative relationships with local governments, academic communities, industry partners and business groups within Microsoft to establish MSRA presence locally and support future growth •Creates synergy among MSRA research groups in multiple locations to enable collaboration and creativity • As a people manager, hires and retains top talents. Deliveries success through empowerment and accountability


Apply

Redwood City, CA; or Remote, US


We help make autonomous technologies more efficient, safer, and accessible.

Helm.ai builds AI software for autonomous driving and robotics. Our "Deep Teaching" methodology is uniquely data and capital efficient, allowing us to surpass traditional approaches. Our unsupervised learning software can train neural networks without the need for human annotation or simulation and is hardware-agnostic. We work with some of the world's largest automotive manufacturers and we've raised over $100M from Honda, Goodyear Ventures, Mando, and others to help us scale.

Our team is made up of people with a diverse set of experiences in software and academia. We work together towards one common goal: to integrate the software you'll help us build into hundreds of millions of vehicles.

We offer: - Competitive health insurance options - 401K plan management - Remote-friendly and flexible team culture - Free lunch and fully-stocked kitchen in our South Bay office - Additional perks: monthly wellness stipend, office set up allowance, company retreats, and more to come as we scale - The opportunity to work on one of the most interesting, impactful problems of the decade

Visit our website to apply for a position.


Apply

Vancouver, British Columbia, Canada


Overview Microsoft Research (MSR), a leading industrial research laboratory comprised of over 1,000 computer scientists working across the United States, United Kingdom, China, India, Canada, and the Netherlands.

We are currently seeking  a Researcher in the area of  Artificial Specialized Intelligence located in Vancouver, British Columbia, with a keen interest in developing cutting-edge large foundation models and post-training techniques for different domains and scenarios. This is an opportunity to drive an ambitious research agenda while collaborating with diverse teams to push for novel applications of those areas.  
  Over the past 30 years, our scientists have not only conducted world-class computer science research but also integrated advanced technologies into our products and services, positively impacting millions of lives and propelling Microsoft to the forefront of digital transformation.   Responsibilities Conduct cutting-edge research in large foundation models, focusing on applying large foundation models in specific domain. Collaborate with cross-functional teams to integrate solutions into Artificial Intelligence (AI) -driven system. Develop and maintain research prototypes and software tools, ensuring that they are well-documented and adhere to best practices in software development. Publish research findings in top-tier conferences and journals and present your work at industry events. Collaborate with other AI researchers and engineers, sharing knowledge and expertise to foster a culture of innovation and continuous learning within the team.


Apply

Location Seattle, WA


Description Amazon's Compliance Shared Services (CoSS) is looking for a smart, energetic, and creative Sr Applied Scientist to extend and invent state-of-the-art research in multi-modal architectures, large language models across federated and continuous learning paradigms spread across multiple systems to join the Applied Research Science team in Seattle. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to deliver scientific innovations into production systems at Amazon-scale that increase automation accuracy and coverage, and extend and invent new research as a key author to deliver re-usable foundational capabilities for automation.

You will analyze and process large amounts of image, text and tabular data from product detail pages, combine them with additional external and internal sources of multi-modal data, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms in federated and continuous learning modes that can be integrated and launched across multiple systems. You will partner with engineers and product managers across multiple Amazon teams to design new ML solutions implemented across worldwide Amazon stores for the entire Amazon product catalog.


Apply

San Jose, CA

The Media Analytics team at NEC Labs America is seeking outstanding researchers with backgrounds in computer vision or machine learning. Candidates must possess an exceptional track record of original research and passion to create high impact products. Our key research areas include autonomous driving, open vocabulary perception, prediction and planning, simulation, neural rendering, agentic LLMs and foundational vision-language models. We have a strong internship program and active collaborations with academia. The Media Analytics team publishes extensively at top-tier venues such as CVPR, ICCV or ECCV.

To check out our latest work, please visit: https://www.nec-labs.com/research/media-analytics/

Qualifications: 1. PhD in Computer Science (or equivalent) 2. Strong publication record at top-tier computer vision or machine learning venues 3. Motivation to conduct independent research from conception to implementation.


Apply

Location Multiple Locations


Description

Members of our team are part of a multi-disciplinary core research group within Qualcomm which spans software, hardware, and systems. Our members contribute technology deployed worldwide by partnering with our business teams across mobile, compute, automotive, cloud, and IOT. We also perform and publish state-of-the-art research on a wide range of topics in machine-learning, ranging from general theory to techniques that enable deployment on resource-constrained devices. Our research team has demonstrated first-in-the-world research and proof-of-concepts in areas such model efficiency, neural video codecs, video semantic segmentation, federated learning, and wireless RF sensing (https://www.qualcomm.com/ai-research), has won major research competitions such as the visual wake word challenge, and converted leading research into best-in-class user-friendly tools such as Qualcomm Innovation Center’s AI Model Efficiency Toolkit (https://github.com/quic/aimet). We recently demonstrated the feasibility of running a foundation model (Stable Diffusion) with >1 billion parameters on an Android phone under one second after performing our full-stack AI optimizations on the model.

Role responsibility can include both, applied and fundamental research in the field of machine learning with development focus in one or many of the following areas:

  • Conducts fundamental machine learning research to create new models or new training methods in various technology areas, e.g. large language models, deep generative models (VAE, Normalizing-Flow, ARM, etc), Bayesian deep learning, equivariant CNNs, adversarial learning, diffusion models, active learning, Bayesian optimizations, unsupervised learning, and ML combinatorial optimization using tools like graph neural networks, learned message-passing heuristics, and reinforcement learning.

  • Drives systems innovations for model efficiency advancement on device as well as in the cloud. This includes auto-ML methods (model-based, sampling based, back-propagation based) for model compression, quantization, architecture search, and kernel/graph compiler/scheduling with or without systems-hardware co-design.

  • Performs advanced platform research to enable new machine learning compute paradigms, e.g., compute in memory, on-device learning/training, edge-cloud distributed/federated learning, causal and language-based reasoning.

  • Creates new machine learning models for advanced use cases that achieve state-of-the-art performance and beyond. The use cases can broadly include computer vision, audio, speech, NLP, image, video, power management, wireless, graphics, and chip design

  • Design, develop & test software for machine learning frameworks that optimize models to run efficiently on edge devices. Candidate is expected to have strong interest and deep passion on making leading-edge deep learning algorithms work on mobile/embedded platforms for the benefit of end users.

  • Research, design, develop, enhance, and implement different components of machine learning compiler for HW Accelerators.

  • Design, implement and train DL/RL algorithms in high-level languages/frameworks (PyTorch and TensorFlow).


Apply

Gothenburg, Sweden

This fully-funded PhD position offers an opportunity to delve into the area of geometric deep learning within the broader landscape of machine learning and 3D computer vision. As a candidate, you'll have the chance to develop theoretical concepts and innovative methodologies while contributing to real-world imaging applications. Moreover, you will enjoy working in a diverse, collaborative, supportive and internationally recognized environment.

The PhD project centers on understanding and improving deep learning methods for 3D scene analysis and 3D generative diffusion models. We aim to explore new ways of encoding symmetries in deep learning models in order to scale up computations, a necessity for realizing truly 3D generative models for general scenes. We aim to explore the application of these models in key problems involving novel view synthesis and self-supervised learning.

If you are interested and present at CVPR, then feel free to reach out to Prof. Fredrik Kahl, head of the Computer Vision Group.


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

We are looking for a Research Engineer, with passion for working on cutting edge problems that can help us create highly realistic, emotional and life-like synthetic humans through text-to-video.

Our aim is to make video content creation available for all - not only to studio production!

🧑🏼‍🔬 You will be someone who loves to code and build working systems. You are used to working in a fast-paced start-up environment. You will have experience with the software development life cycle, from ideation through implementation, to testing and release. You will also have extensive knowledge and experience in Computer Vision domain. You will also have experience within Generative AI space (GANs, Diffusion models and the like!).

👩‍💼 You will join a group of more than 50 Engineers in the R&D department and will have the opportunity to collaborate with multiple research teams across diverse areas, our R&D research is guided by our co-founders - Prof. Lourdes Agapito and Prof. Matthias Niessner and director of Science Prof. Vittorio Ferrari.

If you know and love DALL.E, MUSE, IMAGEN, MAKE-A-VIDEO, STABLE DIFFUSION and more - and you love large data, large compute and writing clean code, then we would love to talk to you.


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

Canberra/Australia


We are looking for new outstanding PhD students for the upcoming scholarship round (application is due on 31st August 2024) at the Australian National University (ANU is ranked #30 in the QS Ranking 2025) or possibly at another Australian universities.

We are looking for new PhD students to work on new problems that may span over (but are not limited to) "clever" adapting of Foundation Models, LLMs, diffusion models (LORAs etc.,), NERF, or design of Graph Neural Networks, design of new (multi-modal) Self-supervised Learning and Contrastive Learning Models (masked models, images, videos, text, graphs, time series, sequences, etc. ) or adversarial and/or federated learning or other contemporary fundamental/applied problems (e.g., learning without backprop, adapting FMs to be less resource hungry, planning and reasoning, hyperbolic geometry, protein property prediction, structured output generative models, visual relation inference, incremental/learning to learn problems, low shot, etc.)

To succeed, you need an outstanding publication record, e.g., one or more first-author papers in venues such CVPR, ICCV, ECCV, AAAI, ICLR, NeurIPS, ICML, IJCAI, ACM KDD, ACCV, BMVC, ACM MM, IEEE. Trans. On Image Processing, CVIU, IEEE TPAMI, or similar (the list is non-exhaustive). Non-first author papers will also help if they are in the mix. Some patents and/or professional experience in Computer Vision, Machine Learning or AI are a bonus. You also need a good GPA to succeed.

We are open to discussing your interests and topics, if you reach out, we can discuss what is possible. Yes, we have GPUs.

If you are interested, reach out for an informal chat with Dr. Koniusz. I am at CVPR if you want to chat?): piotr.koniusz@data61.csiro.au (or piotr.koniusz@anu.edu.au, www.koniusz.com)


Apply