Skip to yearly menu bar Skip to main content




CVPR 2024 Career Website

Here we highlight career opportunities submitted by our Exhibitors, and other top industry, academic, and non-profit leaders. We would like to thank each of our exhibitors for supporting CVPR 2024. Opportunities can be sorted by job category, location, and filtered by any other field using the search box. For information on how to post an opportunity, please visit the help page, linked in the navigation bar above.

Search Opportunities

Location Multiple Locations


Description

Members of our team are part of a multi-disciplinary core research group within Qualcomm which spans software, hardware, and systems. Our members contribute technology deployed worldwide by partnering with our business teams across mobile, compute, automotive, cloud, and IOT. We also perform and publish state-of-the-art research on a wide range of topics in machine-learning, ranging from general theory to techniques that enable deployment on resource-constrained devices. Our research team has demonstrated first-in-the-world research and proof-of-concepts in areas such model efficiency, neural video codecs, video semantic segmentation, federated learning, and wireless RF sensing (https://www.qualcomm.com/ai-research), has won major research competitions such as the visual wake word challenge, and converted leading research into best-in-class user-friendly tools such as Qualcomm Innovation Center’s AI Model Efficiency Toolkit (https://github.com/quic/aimet). We recently demonstrated the feasibility of running a foundation model (Stable Diffusion) with >1 billion parameters on an Android phone under one second after performing our full-stack AI optimizations on the model.

Role responsibility can include both, applied and fundamental research in the field of machine learning with development focus in one or many of the following areas:

  • Conducts fundamental machine learning research to create new models or new training methods in various technology areas, e.g. large language models, deep generative models (VAE, Normalizing-Flow, ARM, etc), Bayesian deep learning, equivariant CNNs, adversarial learning, diffusion models, active learning, Bayesian optimizations, unsupervised learning, and ML combinatorial optimization using tools like graph neural networks, learned message-passing heuristics, and reinforcement learning.

  • Drives systems innovations for model efficiency advancement on device as well as in the cloud. This includes auto-ML methods (model-based, sampling based, back-propagation based) for model compression, quantization, architecture search, and kernel/graph compiler/scheduling with or without systems-hardware co-design.

  • Performs advanced platform research to enable new machine learning compute paradigms, e.g., compute in memory, on-device learning/training, edge-cloud distributed/federated learning, causal and language-based reasoning.

  • Creates new machine learning models for advanced use cases that achieve state-of-the-art performance and beyond. The use cases can broadly include computer vision, audio, speech, NLP, image, video, power management, wireless, graphics, and chip design

  • Design, develop & test software for machine learning frameworks that optimize models to run efficiently on edge devices. Candidate is expected to have strong interest and deep passion on making leading-edge deep learning algorithms work on mobile/embedded platforms for the benefit of end users.

  • Research, design, develop, enhance, and implement different components of machine learning compiler for HW Accelerators.

  • Design, implement and train DL/RL algorithms in high-level languages/frameworks (PyTorch and TensorFlow).


Apply

At Zoox, you will collaborate with a team of world-class engineers with diverse backgrounds in areas such as AI, robotics, mechatronics, planning, control, localization, computer vision, rendering, simulation, distributed computing, design, and automated testing. You’ll master new technologies while working on code, algorithms, and research in your area of expertise to create and refine key systems and move Zoox forward.

Working at a startup gives you the chance to manifest your creativity and highly impact the final product.


Apply

Tokyo, Tokyo-to, Japan


Overview As one of the world's leading industrial research laboratories, Microsoft Research (MSR) has more than 1,000 researchers and engineers working across the globe. In the past 30 years, Microsoft scientists have not only carried out world-class computer science research, but also transferred the advanced technologies into our products and services that have changed millions of people’s lives and ensured that Microsoft is at the forefront of digital transformation.

Part of Microsoft Research, Microsoft Research Asia (MSR Asia), established in 1998, is a leading research lab with major sites in Beijing, Shanghai and Vancouver. Over the years, technologies developed by MSR Asia have made a significant impact within Microsoft and also around the world, and new, innovative technologies are constantly being born from the lab. As one of the world-class research labs, MSRA offers an exhilarating, supportive, open and inclusive environment for top talents to create the future through their disruptive and cutting-edge research. (More information about Microsoft Research Lab - Asia - Microsoft Research).

Along with business growth, Microsoft Research Asia (MSRA) is increasing its presence in Japan, and looking for a Principal Research Manager who specializes in AI with an emphasis on Embodied AI and Robotics, AI Model innovations (NLP, vision, multi-modality), Societal AI, Wireless sensing, and Wellbeing. This is a unique opportunity to lead an ambitious research agenda and work with various teams to explore new applications of those research areas.

Responsibilities •As a leading and accomplished expert in a broad research area (e.g., Embodied AI and Robotics, AI Model, Multimedia and Vision), has a comprehensive understanding of the relevant literature, research methods, and business and academic context. •Defines and articulates a clear long-term research vision that is in line with MSRA strategic focus and drive research agenda landing with planned schedule •As a local representative, fosters cooperative relationships with local governments, academic communities, industry partners and business groups within Microsoft to establish MSRA presence locally and support future growth •Creates synergy among MSRA research groups in multiple locations to enable collaboration and creativity • As a people manager, hires and retains top talents. Deliveries success through empowerment and accountability


Apply

Natick, MA, United States


The Company: Cognex is a global leader in the exciting and growing field of machine vision. This position is a hybrid role in our Natick, MA corporate HQ.

The Team: This position is for an experienced Software Engineer in the Core Vision Technology team at Cognex, focused on architecting and productizing the best-in-class computer vision algorithms and AI models that power Cognex’s industrial barcode readers and 2D vision tools with a mission to innovate on behalf of customers and make this technology accessible to a broad range of users and platforms. Our products combine custom hardware, specialized lighting and optics, and world-class vision algorithms/models to create embedded systems that can find and read high-density symbols on package labels or marked directly on a variety of industrial parts, including aircraft engines, electronics substrates, and pharmaceutical test equipment. Our devices need to read hundreds of codes per second, so speed-optimized hardware and software work together to create best in class technology. Companies around the world rely on Cognex vision tools and technology to guide assembly, automate inspection, and speed up production and distribution.

Job Summary: The Core Vision Technology team is seeking an experienced developer with deep knowledge of the software development life cycle, creative problem solving skills and solid design thinking, with a focus on productization of AI technology on embedded platforms. You will play the critical role of ** a chief architect **, who will lead the development and productization of computer vision AI models and algorithms on multiple Cognex products; with the goal of making the technology modular and available to a broad range of users and platforms. In this role, you will interface with machine vision experts in R&D, product, hardware, and other software engineering teams at Cognex. A successful individual will lead design discussions, make sound architectural choices for the future on different embedded platforms, advocate for engineering excellence, mentor junior engineers and extend technical influence across teams. Prior experience with productization of AI technology is essential for this position.

Essential Functions: -Develop and productize innovative vision algorithms, including AI models developed by the R&D team for detecting and reading challenging 1D and 2D barcodes, and vision tools for gauging, inspection, guiding, and identifying industrial parts. -Lead software and API design discussions and make scalable technology choices meeting current and future business needs.
-More details in the link below

Minimum education and work experience required: MS or PhD from a top engineering school in EE, CS or equivalent 7+ years relevant, high tech work experience

If you would like to meet the hiring manager at CVPR to discuss this opportunity, please email ahmed.elbarkouky@cognex.com


Apply

Job Description Summary As a Research Engineer involved in the design of electrical machines, you will work in a collaborative team environment. You will be contributing to the development of advanced machine system concepts as well as their implementation for application to aircraft engine systems, power generation, and electric and hybrid vehicle applications. As part of a multi-disciplinary team, you will contribute to the planning, development, and transition of technologies from concept to products and/or services for GE Aerospace internal and external clients.

GE Aerospace Research will continue to play a vital role in supporting the industry through a historic recovery while shaping the future of flight. We invent the future of flight, lift people up and bring them home safely. Our commitment to lead the industry, to keep safe the flying public and the armed forces, and to lift up one another and our communities, remains our north star. Our purpose is what ties us to one another and gives meaning to our work.

Roles and Responsibilities

Work with customers to identify key system requirements.

Determine electrical machine (generators, motors, power delivery, and accessories') requirements by studying system and customer requirements.

Use system simulation tools, such as MATLAB, Simulink, and PLECS, to validate and refine control algorithms for a wide array of electric machines to ensure the system will perform in a manner consistent with the requirements.

Integrate the output of finite element analysis and other machine design software to determine and implement machine parameters within the system model.

Work closely with the electrical machine design team to make sure the physical machine meets requirements.

Develop and implement test procedures for electrical machine systems and document performance characteristics.

Deliver effective presentations, reports, and publications to Global Research, GE Businesses, government agencies, professional societies, and peer-reviewed journals.

Required Qualifications

PHD in Electrical Engineering or related field, with primary focus in controls applied to electric machines.

In-depth knowledge of electrical machines including electromagnetic, thermal as well as mechanical technology aspects.

Experience in a wide variety of machine topologies

Expertise in simulation tools such as finite elements, MATLAB (Simulink) and others such as PLECS.

US Citizenship required

Must be willing to work out of an office located in Niskayuna, NY

Must be 18 years or older

You must submit your application for employment on the careers page at www.gecareers.com to be considered.

Desired Characteristics

Experience in Automotive Hybrid Electrical or Aerospace Systems.

Strong interpersonal skills.

Strong analytical skills.

Ability to work across all functions/levels as part of a global team.

Ability to work under pressure and meet deadlines.

Excellent written and verbal communication skills.

Strong ties to the external technical community.

Entrepreneurial inclination

The base pay range for this position is 80,000 - 150,000 USD Annually. The specific pay offered may be influenced by a variety of factors, including the candidate’s experience, education, and skill set. This position is also eligible for an annual discretionary bonus based on a percentage of your base salary. This posting is expected to close on July 12, 2024


Apply

Location San Francisco, CA


Description Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale.

You will be managing a team within the Music Machine Learning and Personalization organization that is responsible for developing, training, serving and iterating on models used for personalized candidate generation for both Music and Podcasts.


Apply

Canberra/Australia


We are looking for new outstanding PhD students for the upcoming scholarship round (application is due on 31st August 2024) at the Australian National University (ANU is ranked #30 in the QS Ranking 2025) or possibly at another Australian universities.

We are looking for new PhD students to work on new problems that may span over (but are not limited to) "clever" adapting of Foundation Models, LLMs, diffusion models (LORAs etc.,), NERF, or design of Graph Neural Networks, design of new (multi-modal) Self-supervised Learning and Contrastive Learning Models (masked models, images, videos, text, graphs, time series, sequences, etc. ) or adversarial and/or federated learning or other contemporary fundamental/applied problems (e.g., learning without backprop, adapting FMs to be less resource hungry, planning and reasoning, hyperbolic geometry, protein property prediction, structured output generative models, visual relation inference, incremental/learning to learn problems, low shot, etc.)

To succeed, you need an outstanding publication record, e.g., one or more first-author papers in venues such CVPR, ICCV, ECCV, AAAI, ICLR, NeurIPS, ICML, IJCAI, ACM KDD, ACCV, BMVC, ACM MM, IEEE. Trans. On Image Processing, CVIU, IEEE TPAMI, or similar (the list is non-exhaustive). Non-first author papers will also help if they are in the mix. Some patents and/or professional experience in Computer Vision, Machine Learning or AI are a bonus. You also need a good GPA to succeed.

We are open to discussing your interests and topics, if you reach out, we can discuss what is possible. Yes, we have GPUs.

If you are interested, reach out for an informal chat with Dr. Koniusz. I am at CVPR if you want to chat?): piotr.koniusz@data61.csiro.au (or piotr.koniusz@anu.edu.au, www.koniusz.com)


Apply

ASML US, including its affiliates and subsidiaries, bring together the most creative minds in science and technology to develop lithography machines that are key to producing faster, cheaper, more energy-efficient microchips. We design, develop, integrate, market and service these advanced machines, which enable our customers - the world’s leading chipmakers - to reduce the size and increase the functionality of their microchips, which in turn leads to smaller, more powerful consumer electronics. Our headquarters are in Veldhoven, Netherlands and we have 18 office locations around the United States including main offices in Chandler, Arizona, San Jose and San Diego, California, Wilton, Connecticut, and Hillsboro, Oregon.

ASML’s Optical Sensing (Wafer Alignment Sensor and YieldStar) department in Wilton, Connecticut is seeking a Design Engineer to support and develop complex optical/photonic sensor systems used within ASML’s photolithography tools. These systems typically include light sources, detectors, optical/electro-optical components, fiber optics, electronics and signal processing software functioning in close collaboration with the rest of the lithography system. As a design engineer, you will design, develop, build and integrate optical sensor systems.

Role and Responsibilities Use general Physics, Optics, Software knowledge and an understanding of the sensor systems and tools to develop optical alignment sensors in lithography machines Have hands-on sills of building optical systems (e.g. imaging, testing, alignment, detector system, etc.) Have strong data analysis sills to evaluate sensor performance and troubleshooting Leadership:

Lead executing activities for determining problem root cause, execute complex tests, gather data and effectively communicate results on different levels of abstraction (from technical colleagues to high level managers) Lead engineers in various competencies (e.g. software, electronics, equipment engineering, manufacturing engineering, etc.) in support of feature delivery for alignment sensors Problem Solving: Troubleshooting complex technical problems Develop/debug data signal processing algorithms Develop and execute test plans in order to determine problem root cause Communications/Teamwork: Draw conclusions based on the input from different stakeholders Capability to clearly communicate the information on different level of abstraction Programming: Implement data analysis techniques into functioning MATLAB codes Optimization skills GUI building experience Familiarly with LabView and Python Some travel (up to 10%) to Europe, Asia and within the US can be expected


Apply

Vancouver, British Columbia, Canada


Overview Microsoft Research (MSR), a leading industrial research laboratory, comprises over 1,000 computer scientists working across the United States, United Kingdom, China, India, Canada, and the Netherlands.

We are currently seeking Principal Researcher in the area of Artificial Specialized Intelligence and artificial general intelligence located in Vancouver, British Columbia.

This is an opportunity to drive an ambitious research agenda while collaborating with diverse teams to push for novel applications of those areas.

Over the past 30 years, our scientists have not only conducted world-class computer science research but also integrated advanced technologies into our products and services, positively impacting millions of lives and propelling Microsoft to the forefront of digital transformation.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

Responsibilities Identifying and driving new research directions, creating new technologies and collaborating with Microsoft product groups and external partners to deploy them in real-world settings. Stay current with the latest trends, research, and developments in AI, machine learning, and system architecture to ensure our systems remain at the forefront of innovation. Evaluate the performance of AI-centric systems and provide recommendations for improvement and optimization. Publish research findings in peer-reviewed journals, conferences, and other relevant venues, and present research results to internal and external stakeholders. Mentor and guide researchers and engineers in their research and development efforts. Collaborate with industry partners and academic institutions to drive joint research projects and initiatives.


Apply

Location Bellevue, WA


Description Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale.

This role is for the AFT AI team which has deep expertise developing cutting edge AI solutions at scale and successfully applying them to business problems in the Amazon Fulfillment Network. These solutions typically utilize machine learning and computer vision techniques, applied to text, sequences of events, images or video from existing or new hardware. The team is comprised of scientists, who develop machine learning and computer vision solutions, analytics, who evaluate the expected business impact for a project and the performance of these solutions, and software engineers, who provide necessary support such as annotation pipelines and machine learning library development.

We are looking for an Applied Scientist with expertise in computer vision. You will work alongside other CV scientists, engineers, product managers and various stakeholders to deploy vision models at scale across a diverse set of initiatives. If you are a self-motivated individual with a zeal for customer obsession and ownership, and are passionate about applying computer vision for real world problems - this is the team for you.


Apply

Zoox is looking for a software engineer to join our Perception team and help us build novel architectures for classifying and understanding the complex and dynamic environments in our cities. In this role, you will have access to the best sensor data in the world and an incredible infrastructure for testing and validating your algorithms. We are creating new algorithms for segmentation, tracking, classification, and high-level scene understanding, and you could work on any (or all!) of these components.

We're looking for engineers with advanced degrees and experience building perception pipelines that work with real data in rapidly changing and uncertain environments.


Apply

The Prediction & Behavior ML team is responsible for developing machine-learned models that understand the full scene around our vehicle and forecast the behavior for other agents, our own vehicle’s actions, and for offline applications. To solve these problems we develop deep learning algorithms that can learn behaviors from data and apply them on-vehicle to influence our vehicle’s driving behavior and offline to provide learned models to autonomy simulation and validation. Given the tight integration of behavior forecasting and motion planning, our team necessarily works very closely with the Planner team in the advancement of our overall vehicle behavior. The Prediction & Behavior ML team also works closely with our Perception, Simulation, and Systems Engineering teams on many cross-team initiatives.


Apply

As a systems engineer for perception safety, your primary responsibility will be to define and ensure the safety performance of the perception system. You will be working in close collaboration with perception algorithm and sensor hardware development teams.


Apply

Excited to see you at CVPR! We’ll be at booth 1404. Come see us to talk more about roles.

Our team consists of people with diverse software and academic experiences. We work together towards one common goal: integrating the software, you'll help us build into hundreds of millions of vehicles.

As the MLE, you will collaborate with researchers to perform research operations using existing infrastructure. You will use your judgment in complex scenarios and help apply standard techniques to various technical problems. Specifically, you will:

  • Characterize neural network quality, failure modes, and edge cases based on research data
  • Maintain awareness of current trends in relevant areas of research and technology
  • Coordinate with researchers and accurately convey the status of experiments
  • Manage a large number of concurrent experiments and make accurate time estimates for deadlines
  • Review experimental results and suggest theoretical or process improvements for future iterations
  • Write technical reports indicating qualitative and quantitative results to external parties

Apply