Skip to yearly menu bar Skip to main content




CVPR 2024 Career Website

The CVPR 2024 conference is not accepting applications to post at this time.

Here we highlight career opportunities submitted by our Exhibitors, and other top industry, academic, and non-profit leaders. We would like to thank each of our exhibitors for supporting CVPR 2024. Opportunities can be sorted by job category, location, and filtered by any other field using the search box. For information on how to post an opportunity, please visit the help page, linked in the navigation bar above.

Search Opportunities

Redmond, Washington, United States


Overview Microsoft Research (MSR) AI Frontiers lab is seeking applications for the position of Principal Researcher – Generative AI to join their team.

The mission of the AI Frontiers lab is to expand the pareto frontier of Artificial Intelligence (AI) capabilities, efficiency, and safety through innovations in foundation models and learning agent platforms. Some of our projects include work on Small Language Models (e.g. Phi, Orca) and Multi-Agent AI (e.g. AutoGen).

We are seeking a Principal Researcher – Generative AI to join our team and lead efforts on the advancement of Generative AI and Large Language Models (LLMs) technologies. As a Principal Researcher – Generative AI, you will play a crucial role in leading, developing, improving, and exploring the capabilities of Generative AI models. Your work will have a significant impact on the development of cutting-edge technologies, advancing state-of-the-art and providing practical solutions to real-world problems.  

Our ongoing research areas encompass but are not limited to:

Pre-training: especially of small language and multimodal models Alignment and Post-training: e.g., Instruction tuning and reinforcement learning from feedback Continual Learning: Enabling LLMs to evolve and adapt over time and learn from previous experiences human interactions Specialization: Tailoring LLMs to meet application-specific requirements Orchestration and multi-agent systems: automated orchestration between multiple agents incorporating human feedback and oversight

MSR offers a vibrant environment for cutting-edge, multidisciplinary, research, including access to diverse, real-world problems and data, opportunities for experimentation and real-world impact, an open publication policy, and close links to top academic institutions around the world.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.   

Responsibilities You will perform cutting-edge research in collaboration with other researchers, engineers, and product groups.
As a member of a word-class research organization, you will be a part of research breakthroughs in the field and will be given an opportunity to realize your ideas in products and services used worldwide. Embody our culture and values.


Apply

Inria (Grenoble), France


human-robot interaction, machine learning, computer vision, representation learning

We are looking for highly motivated students joining our team at INRIA. This project will take place in close collaboration between Inria team THOTH and the multidisciplinary institute in artificial intelligence (MIAI) in Grenoble

Topic: Human-robot systems are challenging because the actions of one agent can significantly influence the actions of others. Therefore, anticipating the partner's actions is crucial. By inferring beliefs, intentions, and desires, we can develop cooperative robots that learn to assist humans or other robots effectively. In this project we are in particular interested in estimating human intentions to enable collaborative tasks between humans and robots such as human-to-robot and robot-to-human handovers.

Contact pia.bideau@inria.fr The thesis will be jointly supervised by Pia Bideau (THOTH), Karteek Alahari (THOTH) and Xavier Alameda Pineda (RobotLearn).


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

B GARAGE was founded in 2017 by two PhD graduates from Stanford University. After having spent over five years researching robotics, computer vision, aeronautics, and drone autonomy, the co-founders set their minds on building a future where aerial robots would become an integral part of our daily lives without anyone necessarily piloting them. Together, our common goal is to redefine the user experience of drones and to expand the horizon for the use of drones.

The B GARAGE team is always looking for an enthusiastic, proactive, and collaborative Robotics and Automation Engineers to support the launch of intelligent aerial robots and autonomously sustainable ecosystems.

If you're interested in joining the B Garage team but don't see a role open that fits your background, apply to the general application and we'll reach out to discuss your career goals.


Apply

Location Seattle, WA Palo Alto, CA


Description Amazon’s product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on an AI-first initiative to continue to improve the way we do search through the use of large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced multi-modal deep-learning models on very large scale datasets, specifically through the use of advanced systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge Computer Vision and Deep Learning technologies and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: * How can multi-modal inputs in deep-learning models help us deliver delightful shopping experiences to millions of Amazon customers? * Can combining multi-modal data and very large scale deep-learning models help us provide a step-function improvement to the overall model understanding and reasoning capabilities? We are looking for exceptional scientists who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization.


Apply

Location San Diego


Description

At Qualcomm, we are transforming the automotive industry with our Snapdragon Digital Chassis and building the next generation software defined vehicle (SDV).

Snapdragon Ride is an integral pillar of our Snapdragon Digital Chassis, and since its launch it has gained momentum with a growing number of global automakers and Tier1 suppliers. Snapdragon Ride aims to address the complexity of autonomous driving and ADAS by leveraging its high-performance, power-efficient SoC, industry-leading artificial intelligence (AI) technologies and pioneering vision and drive policy stack to deliver a comprehensive, cost and energy efficient systems solution.

Enabling safe, comfortable, and affordable autonomous driving includes solving some of the most demanding and challenging technological problems. From centimeter-level localization to multimodal sensor perception, sensor fusion, behavior prediction, maneuver planning, and trajectory planning and control, each one of these functions introduces its own unique challenges to solve, verify, test, and deploy on the road.

We are looking for smart, innovative and motivated individuals with strong theory background in deep learning, advanced signal processing, probability & algorithms and good implementation skills in python/C++. Job responsibilities include design and development of novel algorithms for solving complex problems related to behavior prediction for autonomous driving, including trajectory and intention prediction. Develop novel deep learning models to predict trajectories for road users and optimize them to run-in real-time systems. Work closely with sensor fusion and planning team on defining requirements and KPIs. Work closely with test engineers to develop test plans for validating performance in simulations and real-world testing.

Minimum Qualifications: • Bachelor's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 6+ years of Systems Engineering or related work experience. OR Master's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 5+ years of Systems Engineering or related work experience. OR PhD in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 4+ years of Systems Engineering or related work experience.Preferred Qualifications: Ph.D + 2 years industry experience in behavior and trajectory prediction Proficient in variety of deep learning models like CNN, Transformer, RNN, LSTM, VAE, GraphCNN etc Experience working with NLP Deep Learning Networks Proficient in state of the art in machine learning tools (pytorch, tensor flow) 3+ years of experience with Programming Language such as C, C++, Python, etc. 3+ years Systems Engineering, or related work experience in the area of behavior and trajectory prediction. Experience working with, modifying, and creating advanced algorithms Analytical and scientific mindset, with the ability to solve complex problems. Experience in Autonomous driving, Robotics, XR/AR/VR Experience with robust software design for safety-critical systems Excellent written and verbal communication skills, ability to work with a cross-functional team


Apply

Overview We are seeking an exceptionally talented Postdoctoral Research Fellow to join our interdisciplinary team at the forefront of machine learning, computer vision, medical image analysis, neuroimaging, and neuroscience. This position is hosted by the Stanford Translational AI (STAI) in Medicine and Mental Health Lab (PI: Dr. Ehsan Adeli, https://stanford.edu/~eadeli), as part of the Department of Psychiatry and Behavioral Sciences at Stanford University. The postdoc will have the opportunity to directly collaborate with researchers and PIs within the Computational Neuroscience Lab (CNS Lab) in the School of Medicine and the Stanford Vision and Learning (SVL) lab in the Computer Science Department. These dynamic research groups are renowned for groundbreaking contributions to artificial intelligence and medical sciences.

Project Description The successful candidate will have the opportunity to work on cutting-edge projects aimed at building large-scale models for neuroimaging and neuroscience through innovative AI technologies and self-supervised learning methods. The postdoc will contribute to building a large-scale foundation model from brain MRIs and other modalities of data (e.g., genetics, videos, text). The intended downstream applications include understanding the brain development process during the early ages of life, decoding brain aging mechanisms, and identifying the pathology of different neurodegenerative or neuropsychiatric disorders. We use several public and private datasets including but not limited to the Human Connectome Project, UK Biobank, Alzheimer's Disease Neuroimaging Initiative (ADNI), Parkinson’s Progression Marker Initiative (PPMI), Open Access Series of Imaging Studies (OASIS), Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA), Adolescent Brain Cognitive Development (ABCD), and OpenNeuro.

Key Responsibilities Conduct research in machine learning, computer vision, and medical image analysis, with applications in neuroimaging and neuroscience. Develop and implement advanced algorithms for analyzing medical images and other modalities of medical data. Develop novel generative models. Develop large-scale foundation models. Collaborate with a team of researchers and clinicians to design and execute studies that advance our understanding of neurological disorders. Mentor graduate students (Ph.D. and MSc). Publish findings in top-tier journals and conferences. Contribute to grant writing and proposal development for securing research funding.

Qualifications PhD in Computer Science, Electrical Engineering, Neuroscience, or a related field. Proven track record of publications in high-impact journals and conferences including ICML, NeurIPS, ICLR, CVPR, ICCV, ECCV, MICCAI, Nature, and JAMA. Strong background in machine learning, computer vision, medical image analysis, neuroimaging, and neuroscience. Excellent programming skills in Python, C++, or similar languages and experience with ML frameworks such as TensorFlow or PyTorch. Ability to work independently and collaboratively in an interdisciplinary team. Excellent communication skills, both written and verbal.

Benefits Competitive salary and benefits package. Access to state-of-the-art facilities and computational resources. Opportunities for professional development and collaboration with leading experts in the field. Participation in international conferences and workshops. Working at Stanford University offers access to world-class research facilities and a vibrant intellectual community. The university provides numerous opportunities for interdisciplinary collaboration, professional development, and cutting-edge innovation. Additionally, being part of Stanford opens doors to a global network of leading experts and industry partners, enhancing both career growth and research impact.

Apply For full consideration, send a complete application via this form: https://forms.gle/KPQHPGGeXJcEsD6V6


Apply

About the role You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

Redwood City, CA; or Remote, US


We help make autonomous technologies more efficient, safer, and accessible.

Helm.ai builds AI software for autonomous driving and robotics. Our "Deep Teaching" methodology is uniquely data and capital efficient, allowing us to surpass traditional approaches. Our unsupervised learning software can train neural networks without the need for human annotation or simulation and is hardware-agnostic. We work with some of the world's largest automotive manufacturers and we've raised over $100M from Honda, Goodyear Ventures, Mando, and others to help us scale.

Our team is made up of people with a diverse set of experiences in software and academia. We work together towards one common goal: to integrate the software you'll help us build into hundreds of millions of vehicles.

We offer: - Competitive health insurance options - 401K plan management - Remote-friendly and flexible team culture - Free lunch and fully-stocked kitchen in our South Bay office - Additional perks: monthly wellness stipend, office set up allowance, company retreats, and more to come as we scale - The opportunity to work on one of the most interesting, impactful problems of the decade

Visit our website to apply for a position.


Apply

Location Seattle, WA


Description To help a growing organization quickly deliver more efficient features to Prime Video customers, Prime Video’s READI organization is innovating on behalf of our global software development team consisting of thousands of engineers. The READI organization is building a team specialized in forecasting and recommendations. This team will apply supervised learning algorithms for forecasting multi-dimensional related time series using recurrent neural networks. The team will develop forecasts on key business dimensions and recommendations on performance and efficiency opportunities across our global software environment.

As a member of the team, you will apply your deep knowledge of machine learning to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them for customers, where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into designs with development teams and developing ready-to-use learning models. You consistently bring strong, data-driven business and technical judgment to decisions.


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

Redmond, Washington, United States


Overview We are seeking a Principal Research Engineer to join our organization and help improve steerability and control Large Language Models (LLMs) and other AI systems. Our team currently develops Guidance, a fully open-source project that enables developers to control language models more precisely and efficiently with constrained decoding.

As a Principal Research Engineer, you will play a crucial role in advancing the frontier of constrained decoding and imagining new application programming interface (APIs) for language models. If you’re excited about links between formal grammars and generative AI, deeply understanding and optimizing LLM inference, enabling more responsible AI without finetuning and RLHF, and/or exploring fundamental changes to the “text-in, text-out” API, we’d love to hear from you. Our team offers a vibrant environment for cutting-edge, multidisciplinary research. We have a long track record of open-source code and open publication policies, and you’ll have the opportunity to collaborate with world-leading experts across Microsoft and top academic institutions across the world.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond. In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities Develop and implement new constrained decoding research techniques for increasing LLM inference quality and/or efficiency. Example areas of interest include speculative execution, new decoding strategies (e.g. extensions to beam search), “classifier in the loop” decoding for responsible AI, improving AI planning, and explorations of attention-masking based constraints. Re-imagine the use and construction of context-free grammars (CFG) and beyond to fit Generative AI. Examples of improvements here include better tools for constructing formal grammars, extensions to Earley parsing, and efficient batch processing for constrained generation. Consideration of how these techniques are presented to developers – who may not be well versed in grammars and constrained generation -- in an intuitive, idiomatic programming syntax is also top of mind. Design principled evaluation frameworks and benchmarks for measuring the effects of constrained decoding on a model. Some areas of interest to study carefully include efficiency (token throughput and latency), generation quality, and impacts of constrained decoding on AI safety. Publish your research in top AI conferences and contribute your research advances to the guidance open-source project. Other

Embody our Culture and Values


Apply

Excited to see you at CVPR! We’ll be at booth 1404. Come see us to talk more about roles.

Our team consists of people with diverse software and academic experiences. We work together towards one common goal: integrating the software, you'll help us build into hundreds of millions of vehicles.

As a Research Engineer, you will work collaboratively to improve our models and iterate on novel research directions, sometimes in just days. We're looking for talented engineers who would enjoy applying their skills to deeply complex and novel AI problems. Specifically, you will:

  • Apply and extend the Helm proprietary algorithmic toolkit for unsupervised learning and perception problems at scale
  • Carefully execute the development and maintenance of tools used for deep learning experiments designed to provide new functionality for customers or address relevant corner cases in the system as a whole
  • Work closely with software and autonomous vehicle engineers to deploy algorithms on internal and customer vehicle platforms

Apply

London


Who are we?

Our team is the first in the world to use autonomous vehicles on public roads using end-to-end deep learning, computer vision and reinforcement learning. Leveraging our multi-national world-class team of researchers and engineers, we’re using data to learn more intelligent algorithms to bring autonomy for everyone, everywhere. We aim to be the future of self-driving cars, learning from experience and data.

Where you’ll have an impact

We are currently looking for people with research expertise in AI applied to autonomous driving or similar robotics or decision making domain, inclusive, but not limited to the following specific areas:

Foundation models for robotics Model-free and model-based reinforcement learning Offline reinforcement learning Large language models Planning with learned models, model predictive control and tree search Imitation learning, inverse reinforcement learning and causal inference Learned agent models: behavioral and physical models of cars, people, and other dynamic agents You'll be working on some of the world's hardest problems, and able to attack them in new ways. You'll be a key member of our diverse, cross-disciplinary team, helping teach our robots how to drive safely and comfortably in complex real-world environments. This encompasses many aspects of research across perception, prediction, planning, and control, including:

How to leverage our large, rich, and diverse sources of real-world driving data How to architect our models to best employ the latest advances in foundation models, transformers, world models, etc. Which learning algorithms to use (e.g. reinforcement learning, behavioural cloning) How to leverage simulation for controlled experimental insight, training data augmentation, and re-simulation How to scale models efficiently across data, model size, and compute, while maintaining efficient deployment on the car You also have the potential to contribute to academic publications for top-tier conferences like NeurIPS, CVPR, ICRA, ICLR, CoRL etc. working in a world-class team to achieve this.

What you’ll bring to Wayve

Thorough knowledge of and 5+ years applied experience in AI research, computer vision, deep learning, reinforcement learning or robotics Ability to deliver high quality code and familiarity with deep learning frameworks (Python and Pytorch preferred) Experience leading a research agenda aligned with larger goals Industrial and / or academic experience in deep learning, software engineering, automotive or robotics Experience working with training data, metrics, visualisation tools, and in-depth analysis of results Ability to understand, author and critique cutting-edge research papers Familiarity with code-reviewing, C++, Linux, Git is a plus PhD in a relevant area and / or track records of delivering value through machine learning are a big plus. What we offer you

Attractive compensation with salary and equity Immersion in a team of world-class researchers, engineers and entrepreneurs A unique position to shape the future of autonomy and tackle the biggest challenge of our time Bespoke learning and development opportunities Relocation support with visa sponsorship Flexible working hours - we trust you to do your job well, at times that suit you and your time Benefits such as an onsite chef, workplace nursery scheme, private health insurance, therapy, daily yoga, onsite bar, large social budgets, unlimited L&D requests, enhanced parental leave, and more!


Apply

Vancouver, British Columbia, Canada


Overview Microsoft Research (MSR), a leading industrial research laboratory comprised of over 1,000 computer scientists working across the United States, United Kingdom, China, India, Canada, and the Netherlands.

We are currently seeking a Senior Researcher in the area of  Artificial Specialized Intelligence located in Vancouver, British Columbia, with a keen interest in developing cutting-edge large foundation models and post-training techniques for different domains and scenarios. This is an opportunity to drive an ambitious research agenda while collaborating with diverse teams to push for novel applications of those areas.  
  Over the past 30 years, our scientists have not only conducted world-class computer science research but also integrated advanced technologies into our products and services, positively impacting millions of lives and propelling Microsoft to the forefront of digital transformation.

Responsibilities Conduct cutting-edge research in large foundation models, focusing on applying large foundation models in specific domain. Collaborate with cross-functional teams to integrate solutions into Artificial Intelligence (AI) -driven system. Develop and maintain research prototypes and software tools, ensuring that they are well-documented and adhere to best practices in software development. Publish research findings in top-tier conferences and journals and present your work at industry events. Collaborate with other AI researchers and engineers, sharing knowledge and expertise to foster a culture of innovation and continuous learning within the team.


Apply