Skip to yearly menu bar Skip to main content




CVPR 2024 Career Website

Here we highlight career opportunities submitted by our Exhibitors, and other top industry, academic, and non-profit leaders. We would like to thank each of our exhibitors for supporting CVPR 2024. Opportunities can be sorted by job category, location, and filtered by any other field using the search box. For information on how to post an opportunity, please visit the help page, linked in the navigation bar above.

Search Opportunities

Redmond, Washington, United States


Overview The Azure AI Platform (AIP) provides organizations across the world with the tooling and infrastructure needed to build and host AI workloads. The AI Platform organization is scaling rapidly, and we are establishing a world-class data analytics platform to support data-driven decision making through the organization.

We are looking to hire a Senior Data Scientist to join the newly formed AI Platform Analytics team. This individual will be responsible for collaborating with teams across AI Platform to establish trustworthy data sets and provide actionable insights and analysis.

We do not just value differences or different perspectives. We seek them out and invite them in so we can tap into the collective power of everyone in the company. As a result, our customers are better served.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities

Apply your knowledge in quantitative analysis, data mining, and the presentation of data to inform decision-making. Build data manipulation, processing, and data visualization tools and share these tools and your knowledge across the team, Cloud and AI, and Microsoft. Handle large amounts of data using various tools, including your own. Ensure high-quality and reliable data. Drive end-to-end projects by utilizing, applying and analyzing data to associated business problems. Engage with Upper Level Management by making key business decisions. Mentor other team members. Contribute to data-driven culture by collaborating with product and engineering teams across Azure to establish and share best practices Embody our culture and values


Apply

Location San Diego


Description

At Qualcomm, we are transforming the automotive industry with our Snapdragon Digital Chassis and building the next generation software defined vehicle (SDV).

Snapdragon Ride is an integral pillar of our Snapdragon Digital Chassis, and since its launch it has gained momentum with a growing number of global automakers and Tier1 suppliers. Snapdragon Ride aims to address the complexity of autonomous driving and ADAS by leveraging its high-performance, power-efficient SoC, industry-leading artificial intelligence (AI) technologies and pioneering vision and drive policy stack to deliver a comprehensive, cost and energy efficient systems solution.

Enabling safe, comfortable, and affordable autonomous driving includes solving some of the most demanding and challenging technological problems. From centimeter-level localization to multimodal sensor perception, sensor fusion, behavior prediction, maneuver planning, and trajectory planning and control, each one of these functions introduces its own unique challenges to solve, verify, test, and deploy on the road.

We are looking for smart, innovative and motivated individuals with strong theory background in deep learning, advanced signal processing, probability & algorithms and good implementation skills in python/C++. Job responsibilities include design and development of novel algorithms for solving complex problems related to behavior prediction for autonomous driving, including trajectory and intention prediction. Develop novel deep learning models to predict trajectories for road users and optimize them to run-in real-time systems. Work closely with sensor fusion and planning team on defining requirements and KPIs. Work closely with test engineers to develop test plans for validating performance in simulations and real-world testing.

Minimum Qualifications: • Bachelor's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 6+ years of Systems Engineering or related work experience. OR Master's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 5+ years of Systems Engineering or related work experience. OR PhD in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 4+ years of Systems Engineering or related work experience.Preferred Qualifications: Ph.D + 2 years industry experience in behavior and trajectory prediction Proficient in variety of deep learning models like CNN, Transformer, RNN, LSTM, VAE, GraphCNN etc Experience working with NLP Deep Learning Networks Proficient in state of the art in machine learning tools (pytorch, tensor flow) 3+ years of experience with Programming Language such as C, C++, Python, etc. 3+ years Systems Engineering, or related work experience in the area of behavior and trajectory prediction. Experience working with, modifying, and creating advanced algorithms Analytical and scientific mindset, with the ability to solve complex problems. Experience in Autonomous driving, Robotics, XR/AR/VR Experience with robust software design for safety-critical systems Excellent written and verbal communication skills, ability to work with a cross-functional team


Apply

ASML US, including its affiliates and subsidiaries, bring together the most creative minds in science and technology to develop lithography machines that are key to producing faster, cheaper, more energy-efficient microchips. We design, develop, integrate, market and service these advanced machines, which enable our customers - the world’s leading chipmakers - to reduce the size and increase the functionality of their microchips, which in turn leads to smaller, more powerful consumer electronics. Our headquarters are in Veldhoven, Netherlands and we have 18 office locations around the United States including main offices in Chandler, Arizona, San Jose and San Diego, California, Wilton, Connecticut, and Hillsboro, Oregon.

ASML’s Optical Sensing (Wafer Alignment Sensor and YieldStar) department in Wilton, Connecticut is seeking a Design Engineer to support and develop complex optical/photonic sensor systems used within ASML’s photolithography tools. These systems typically include light sources, detectors, optical/electro-optical components, fiber optics, electronics and signal processing software functioning in close collaboration with the rest of the lithography system. As a design engineer, you will design, develop, build and integrate optical sensor systems.

Role and Responsibilities Use general Physics, Optics, Software knowledge and an understanding of the sensor systems and tools to develop optical alignment sensors in lithography machines Have hands-on sills of building optical systems (e.g. imaging, testing, alignment, detector system, etc.) Have strong data analysis sills to evaluate sensor performance and troubleshooting Leadership:

Lead executing activities for determining problem root cause, execute complex tests, gather data and effectively communicate results on different levels of abstraction (from technical colleagues to high level managers) Lead engineers in various competencies (e.g. software, electronics, equipment engineering, manufacturing engineering, etc.) in support of feature delivery for alignment sensors Problem Solving: Troubleshooting complex technical problems Develop/debug data signal processing algorithms Develop and execute test plans in order to determine problem root cause Communications/Teamwork: Draw conclusions based on the input from different stakeholders Capability to clearly communicate the information on different level of abstraction Programming: Implement data analysis techniques into functioning MATLAB codes Optimization skills GUI building experience Familiarly with LabView and Python Some travel (up to 10%) to Europe, Asia and within the US can be expected


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

Redmond, Washington, United States


Overview We are seeking skilled and passionate Senior Research Scientist to join our Responsible & Open Ai Research (ROAR) team in Azure Cognitive Services at Redmond, WA.

As a Senior Research Scientist, you will play a key role in advancing Responsible AI approaches to ensure safe releases of the rapidly evolving multimodal, AI models such as GPT-4 Vision, DALL-E, Sora, and beyond, as well as to expand and enhance the Azure AI Content Safety Service.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities Conduct cutting-edge research to develop Responsible AI definitions, methodologies, algorithms, and models for both measurement and mitigation of multimodal AI risks. Stay abreast of the latest advancements in the field and contribute to the scientific community through publications at top venues. Enable the safe release of multimodal models from OpenAI in Azure OpenAI Service, expand and enhance the Azure AI Content Safety Service with new detection technologies. Develop innovative approaches to address AI safety challenges for diverse customer scenarios. Embody our Culture and Values


Apply

Location Sunnyvale, CA Seattle, WA New York, NY Cambridge, MA


Description The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems.

As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (Gen AI) in Computer Vision.


Apply

Vancouver

Who we are Established in 2017, Wayve is a leader in autonomous vehicle technology, driven by breakthroughs in Embodied AI. Our intelligent, mapless, and hardware-agnostic technologies empower vehicles to navigate complex environments effortlessly. Supported by prominent investors, Wayve is advancing the transition from assisted to fully automated driving, making transportation safer, more efficient, and universally accessible. Join our world-class, multinational team of engineers and researchers as we push the boundaries of frontier AI and autonomous driving, creating impactful technologies and products on a global scale

We are seeking an experienced researcher to be a founding member of our Vancouver team! We are prioritising someone with experience leading projects in AI applied to autonomous driving or similar robotics or decision-making domains, inclusive, but not limited to the following specific areas: Foundation models for robotics or embodied AI Model-free and model-based reinforcement learning Offline reinforcement learning Large language models Planning with learned models, model predictive control and tree search Imitation learning, inverse reinforcement learning and causal inference Learned agent models: behavioural, oral and physical models of cars, people, and other dynamic agents

Challenges you will own You'll be working on some of the world's hardest problems, and able to attack them in new ways. You'll be a technical leader within our diverse, cross-disciplinary team, helping teach our robots how to drive safely and comfortably in complex real-world environments. This encompasses many aspects of research across perception, prediction, planning, and control, including:

Actively contributing to the Science’s technical leadership community, inclusive of proposing new projects, organising their work, and delivering substantial impact across Wayve. Leveraging our large, rich, and diverse sources of real-world driving data Architecting our models to best employ the latest advances in foundation models, transformers, world models, etc, evaluating and incorporating state-of-the-art techniques into our workflows Investigating learning algorithms to use (e.g. reinforcement learning, behavioural cloning) Leveraging simulation for controlled experimental insight, training data augmentation, and re-simulation Scaling models efficiently across data, model size, and compute, while maintaining efficient deployment on the car Collaborating with cross-functional, international teams to integrate research findings into scalable, production-level solutions Potentially contributing to academic publications for top-tier conferences like NeurIPS, CVPR, ICRA, ICLR, CoRL etc. working in a world-class team, contributing to the scientific community and establishing Wayve as a leader in the field

What you will bring to Wayve Proven track record of research in one or more of the topics above demonstrated through deployed applications or publications. Experience leading a research agenda aligned with larger organisation or company goals Strong programming skills in Python, with experience in deep learning frameworks such as PyTorch, numpy, pandas, etc. Experience bringing a machine learning research concept through the full ML development cycle Excellent problem-solving skills and the ability to work independently as well as in a team environment. Demonstrated ability to work collaboratively in a fast-paced, innovative, interdisciplinary team environment. Experience bringing an ML research concept through to production and at scale PhD in Computer Science, Computer Engineering, or a related field

What we offer you The chance to be part of a truly mission driven organisation and an opportunity to shape the future of autonomous driving. Unlike our competitors, Wayve is still relatively small and nimble, giving you the chance to make a huge impact


Apply

Engineering at Pinterest

Our Engineering team is at the core of bringing our platform to life for Pinners worldwide. Working collaboratively and cross-functionally with teams across the company, our engineers tackle growth-driving challenges to build an inspired and inclusive platform for all.

Our future of work is PinFlex

At Pinterest, we know that our best work happens when we feel most inspired. PinFlex promotes flexibility while prioritizing in-person moments to celebrate our culture and drive inspiration. We know that some work can be performed anywhere, and we encourage employees to work where they choose within their country or region, whether that’s at home, at a Pinterest office, or another virtual location. We believe that there is value in a distributed workforce but there are essential touch points for in-person collaboration that will create a big impact for our business and for development and connection.

Stop by booth #2100 to learn more about our open roles and our in-house generative AI foundation model that leverages the full power of our visual search and taste graph! Our engineers and recruiters are excited to connect with you!


Apply

Excited to see you at CVPR! We’ll be at booth 1404. Come see us to talk more about roles.

Our team consists of people with diverse software and academic experiences. We work together towards one common goal: integrating the software, you'll help us build into hundreds of millions of vehicles.

As the MLE, you will collaborate with researchers to perform research operations using existing infrastructure. You will use your judgment in complex scenarios and help apply standard techniques to various technical problems. Specifically, you will:

  • Characterize neural network quality, failure modes, and edge cases based on research data
  • Maintain awareness of current trends in relevant areas of research and technology
  • Coordinate with researchers and accurately convey the status of experiments
  • Manage a large number of concurrent experiments and make accurate time estimates for deadlines
  • Review experimental results and suggest theoretical or process improvements for future iterations
  • Write technical reports indicating qualitative and quantitative results to external parties

Apply

Excited to see you at CVPR! We’ll be at booth 1404. Come see us to talk more about roles.

Our team consists of people with diverse software and academic experiences. We work together towards one common goal: integrating the software, you'll help us build into hundreds of millions of vehicles.

As a Sr. Fullstack Engineer, you will work on our platform engineering team playing a crucial role in enabling our research engineers to fine-tune our foundation models and streamline the machine learning process for our autonomous technology. You will work on developing products that empower our internal teams to maximize efficiency and innovation in our product. Specifically, you will:

  • Build mission-critical tools for improving observability and scaling the entire machine-learning process.
  • Use modern technologies to serve huge amounts of data, visualize key metrics, manage our data inventory, trigger backend data processing pipelines, and more.
  • Work closely with people across the company to create a seamless UI experience.

Apply

Canberra/Australia


We are looking for new outstanding PhD students for the upcoming scholarship round (application is due on 31st August 2024) at the Australian National University (ANU is ranked #30 in the QS Ranking 2025) or possibly at another Australian universities.

We are looking for new PhD students to work on new problems that may span over (but are not limited to) "clever" adapting of Foundation Models, LLMs, diffusion models (LORAs etc.,), NERF, or design of Graph Neural Networks, design of new (multi-modal) Self-supervised Learning and Contrastive Learning Models (masked models, images, videos, text, graphs, time series, sequences, etc. ) or adversarial and/or federated learning or other contemporary fundamental/applied problems (e.g., learning without backprop, adapting FMs to be less resource hungry, planning and reasoning, hyperbolic geometry, protein property prediction, structured output generative models, visual relation inference, incremental/learning to learn problems, low shot, etc.)

To succeed, you need an outstanding publication record, e.g., one or more first-author papers in venues such CVPR, ICCV, ECCV, AAAI, ICLR, NeurIPS, ICML, IJCAI, ACM KDD, ACCV, BMVC, ACM MM, IEEE. Trans. On Image Processing, CVIU, IEEE TPAMI, or similar (the list is non-exhaustive). Non-first author papers will also help if they are in the mix. Some patents and/or professional experience in Computer Vision, Machine Learning or AI are a bonus. You also need a good GPA to succeed.

We are open to discussing your interests and topics, if you reach out, we can discuss what is possible. Yes, we have GPUs.

If you are interested, reach out for an informal chat with Dr. Koniusz. I am at CVPR if you want to chat?): piotr.koniusz@data61.csiro.au (or piotr.koniusz@anu.edu.au, www.koniusz.com)


Apply

The Prediction & Behavior ML team is responsible for developing machine-learned models that understand the full scene around our vehicle and forecast the behavior for other agents, our own vehicle’s actions, and for offline applications. To solve these problems we develop deep learning algorithms that can learn behaviors from data and apply them on-vehicle to influence our vehicle’s driving behavior and offline to provide learned models to autonomy simulation and validation. Given the tight integration of behavior forecasting and motion planning, our team necessarily works very closely with the Planner team in the advancement of our overall vehicle behavior. The Prediction & Behavior ML team also works closely with our Perception, Simulation, and Systems Engineering teams on many cross-team initiatives.


Apply

Job Description Summary As a Research Engineer involved in the design of electrical machines, you will work in a collaborative team environment. You will be contributing to the development of advanced machine system concepts as well as their implementation for application to aircraft engine systems, power generation, and electric and hybrid vehicle applications. As part of a multi-disciplinary team, you will contribute to the planning, development, and transition of technologies from concept to products and/or services for GE Aerospace internal and external clients.

GE Aerospace Research will continue to play a vital role in supporting the industry through a historic recovery while shaping the future of flight. We invent the future of flight, lift people up and bring them home safely. Our commitment to lead the industry, to keep safe the flying public and the armed forces, and to lift up one another and our communities, remains our north star. Our purpose is what ties us to one another and gives meaning to our work.

Roles and Responsibilities

Work with customers to identify key system requirements.

Determine electrical machine (generators, motors, power delivery, and accessories') requirements by studying system and customer requirements.

Use system simulation tools, such as MATLAB, Simulink, and PLECS, to validate and refine control algorithms for a wide array of electric machines to ensure the system will perform in a manner consistent with the requirements.

Integrate the output of finite element analysis and other machine design software to determine and implement machine parameters within the system model.

Work closely with the electrical machine design team to make sure the physical machine meets requirements.

Develop and implement test procedures for electrical machine systems and document performance characteristics.

Deliver effective presentations, reports, and publications to Global Research, GE Businesses, government agencies, professional societies, and peer-reviewed journals.

Required Qualifications

PHD in Electrical Engineering or related field, with primary focus in controls applied to electric machines.

In-depth knowledge of electrical machines including electromagnetic, thermal as well as mechanical technology aspects.

Experience in a wide variety of machine topologies

Expertise in simulation tools such as finite elements, MATLAB (Simulink) and others such as PLECS.

US Citizenship required

Must be willing to work out of an office located in Niskayuna, NY

Must be 18 years or older

You must submit your application for employment on the careers page at www.gecareers.com to be considered.

Desired Characteristics

Experience in Automotive Hybrid Electrical or Aerospace Systems.

Strong interpersonal skills.

Strong analytical skills.

Ability to work across all functions/levels as part of a global team.

Ability to work under pressure and meet deadlines.

Excellent written and verbal communication skills.

Strong ties to the external technical community.

Entrepreneurial inclination

The base pay range for this position is 80,000 - 150,000 USD Annually. The specific pay offered may be influenced by a variety of factors, including the candidate’s experience, education, and skill set. This position is also eligible for an annual discretionary bonus based on a percentage of your base salary. This posting is expected to close on July 12, 2024


Apply

Vancouver


Who we are Established in 2017, Wayve is a leader in autonomous vehicle technology, driven by breakthroughs in Embodied AI. Our intelligent, mapless, and hardware-agnostic technologies empower vehicles to navigate complex environments effortlessly.

Supported by prominent investors, Wayve is advancing the transition from assisted to fully automated driving, making transportation safer, more efficient, and universally accessible. Join our world-class, multinational team of engineers and researchers as we push the boundaries of frontier AI and autonomous driving, creating impactful technologies and products on a global scale

Where you will have an impact Science is the team that is advancing our end-to-end autonomous driving research. The team’s mission is to accelerate our journey to AV2.0 and ensure the future success of Wayve by incubating and investing in new ideas that have the potential to become game-changing technological advances for the company.

As the first Research Manager in our Vancouver office, you will be responsible for managing & scaling a strong Science team in collaboration with other Wayve science teams in London and Mountain View. You will provide coaching and guidance to each of the researchers and engineers within your team and work with leaders across the company to ensure sustainable career growth for your team during a period of growth in the company. You will participate in our project-based operating model where your focus will be unlocking the potential of your team and its technical leaders to drive industry-leading impact. As part of your work, you will help identify the right projects to invest in, ensure the right allocation of resources to those projects, keep the team in good health, provide technical feedback to your team, share progress to build momentum, and build alignment and strong collaboration across the wider Science organisation. We are actively hiring and aim to substantially grow our research team over the next two years and you will be at the heart of this.

Challenges you will own Work closely with team members to develop career plans and growth trajectories based on each individual’s strengths and weaknesses and their own aspirations. Work closely with project leads to ensure team members are having strong impact and are set up for success. Work closely with project leads and Science leadership to ensure projects are resourced in a way that balances the needs of the business with the needs of the individuals. Offer coaching and technical mentorship to direct reports (especially project leads). Bring technical & project management expertise and experience to help accelerate our progress and decision-making. Challenge the status quo (both technical and organisational/process). Prioritize effectively and keep processes lean and effective. Partner with leadership to maintain a culture of cross-boundary collaboration, impact, innovation, and health. Grow the team as a hiring manager, to bring in complementary, diverse skill sets and backgrounds. Anticipate the needs of the business 6-24 months out, identify areas where additional resources are needed or we need to grow new domain expertise, and pitch this to leadership for investment. Contribute to the day-to-day running of the Science team’s operations and larger collaborative efforts.


Apply

Redmond, Washington, United States


Overview We are seeking a Principal Research Engineer to join our organization and help improve steerability and control Large Language Models (LLMs) and other AI systems. Our team currently develops Guidance, a fully open-source project that enables developers to control language models more precisely and efficiently with constrained decoding.

As a Principal Research Engineer, you will play a crucial role in advancing the frontier of constrained decoding and imagining new application programming interface (APIs) for language models. If you’re excited about links between formal grammars and generative AI, deeply understanding and optimizing LLM inference, enabling more responsible AI without finetuning and RLHF, and/or exploring fundamental changes to the “text-in, text-out” API, we’d love to hear from you. Our team offers a vibrant environment for cutting-edge, multidisciplinary research. We have a long track record of open-source code and open publication policies, and you’ll have the opportunity to collaborate with world-leading experts across Microsoft and top academic institutions across the world.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond. In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities Develop and implement new constrained decoding research techniques for increasing LLM inference quality and/or efficiency. Example areas of interest include speculative execution, new decoding strategies (e.g. extensions to beam search), “classifier in the loop” decoding for responsible AI, improving AI planning, and explorations of attention-masking based constraints. Re-imagine the use and construction of context-free grammars (CFG) and beyond to fit Generative AI. Examples of improvements here include better tools for constructing formal grammars, extensions to Earley parsing, and efficient batch processing for constrained generation. Consideration of how these techniques are presented to developers – who may not be well versed in grammars and constrained generation -- in an intuitive, idiomatic programming syntax is also top of mind. Design principled evaluation frameworks and benchmarks for measuring the effects of constrained decoding on a model. Some areas of interest to study carefully include efficiency (token throughput and latency), generation quality, and impacts of constrained decoding on AI safety. Publish your research in top AI conferences and contribute your research advances to the guidance open-source project. Other

Embody our Culture and Values


Apply