Poster
FreeUV: Ground-Truth-Free Realistic Facial UV Texture Recovery via Cross-Assembly Inference Strategy
Xingchao Yang · Takafumi Taketomi · Yuki Endo · Yoshihiro Kanamori
Recovering high-quality 3D facial textures from single-view 2D images is a challenging task, especially under constraints of limited data and complex facial details such as makeup, wrinkles, and occlusions. In this paper, we introduce FreeUV, a novel ground-truth-free UV texture recovery framework that eliminates the need for annotated or synthetic UV data. FreeUV leverages pre-trained stable diffusion model alongside a Cross-Assembly inference strategy to fulfill this objective. In FreeUV, separate networks are trained independently to focus on realistic appearance and structural consistency, and these networks are combined during inference to generate coherent textures. Our approach accurately captures intricate facial features and demonstrates robust performance across diverse poses and occlusions. Extensive experiments validate FreeUV's effectiveness, with results surpassing state-of-the-art methods in both quantitative and qualitative metrics. Additionally, FreeUV enables new applications, including local editing, facial feature interpolation, and multi-view texture recovery. By reducing data requirements, FreeUV offers a scalable solution for generating high-fidelity 3D facial textures suitable for real-world scenarios.
Live content is unavailable. Log in and register to view live content