Skip to yearly menu bar Skip to main content


Poster

Two is Better than One: Efficient Ensemble Defense for Robust and Compact Models

Yoojin Jung ยท Byung Cheol Song


Abstract:

Deep learning-based computer vision systems adopt complex and large architectures to improve performance, yet they face challenges in deployment on resource-constrained mobile and edge devices. To address this issue, model compression techniques such as pruning, quantization, and matrix factorization have been proposed; however, these compressed models are often highly vulnerable to adversarial attacks. We introduce the Efficient Ensemble Defense (EED) technique, which diversifies the compression of a single base model based on different pruning importance scores and enhances ensemble diversity to achieve high adversarial robustness and resource efficiency. EED dynamically determines the number of necessary sub-models during the inference stage, minimizing unnecessary computations while maintaining high robustness. On the CIFAR-10 and SVHN datasets, EED demonstrated state-of-the-art robustness performance compared to existing adversarial pruning techniques, along with an inference speed improvement of up to 1.86 times. This proves that EED is a powerful defense solution in resource-constrained environments.

Live content is unavailable. Log in and register to view live content