Skip to yearly menu bar Skip to main content


Poster

A Unified, Resilient, and Explainable Adversarial Patch Detector

Vishesh Kumar · Akshay Agarwal


Abstract:

Deep Neural Networks (DNNs), backbone architecture in almosteverycomputervisiontask,arev̲rabadversarialaacks,partica̲rlyphysicalout-of-distribution(OOD)adversarialpatches.Eξstgoftenstruggwitherpretgtheseaackswaysta^lignwithhumanvisualperception.OurosedAdvPatchXAIroducesaralized,robust,andexplaabdefensealgorithmspecificallydesigddefendDsagastphysicaladversarialthreats.AdvPatchXAIemploysanovelpatchdecorrelationlosstr^educesfeatureredundancyandenhancesthedistctivessofpatchrepresentations,enablgbeerralizationacrossunseenadversarialscenarios.Itarnsprotyπcalpartsaself-rvisedfashion,enhancgerprηbilityandcorrelationwithhumanvision.Themodelutilizesasparselearlayerforclassification,makgthedecision-makgprocessgloballyerprηbthroughasetofardprotypesandlocallyexplaabbyπnpgrevantprotypeswithanima.OurcomprehensiveevaluationshowstA^dvPatchXAI¬onlyclosesthe`semantic'' gap between latent space and pixel space but also effectively handles unseen adversarial patches even perturbed with unseen corruptions, thereby significantly advancing DNN robustness in practical settings.

Live content is unavailable. Log in and register to view live content