Skip to yearly menu bar Skip to main content




CVPR 2024 Career Website

The CVPR 2024 conference is not accepting applications to post at this time.

Here we highlight career opportunities submitted by our Exhibitors, and other top industry, academic, and non-profit leaders. We would like to thank each of our exhibitors for supporting CVPR 2024. Opportunities can be sorted by job category, location, and filtered by any other field using the search box. For information on how to post an opportunity, please visit the help page, linked in the navigation bar above.

Search Opportunities

Gothenburg, Sweden

This fully-funded PhD position offers an opportunity to delve into the area of geometric deep learning within the broader landscape of machine learning and 3D computer vision. As a candidate, you'll have the chance to develop theoretical concepts and innovative methodologies while contributing to real-world imaging applications. Moreover, you will enjoy working in a diverse, collaborative, supportive and internationally recognized environment.

The PhD project centers on understanding and improving deep learning methods for 3D scene analysis and 3D generative diffusion models. We aim to explore new ways of encoding symmetries in deep learning models in order to scale up computations, a necessity for realizing truly 3D generative models for general scenes. We aim to explore the application of these models in key problems involving novel view synthesis and self-supervised learning.

If you are interested and present at CVPR, then feel free to reach out to Prof. Fredrik Kahl, head of the Computer Vision Group.


Apply

Redmond, Washington, United States


Overview Do you want to shape the future of Artificial Intelligence (AI)? Do you have a passion for solving real-world problems with cutting-edge technologies? Do you enjoy working in a diverse and collaborative team?

The Microsoft Research AI Frontiers group is looking for a Principal Research Software Engineer with demonstrated machine learning experience to advance the state-of-the-art in foundational model-based technologies. Areas of focus on our team include, but are not limited to:

Human-AI interaction, collaboration, and experiences Applications of foundation models and model-based technologies Multi-agent systems and agent platform technologies Model, agent, and AI systems evaluation As a Principal Research Software Engineer on our team, you will need:

A drive for real world impact, demonstrated by a passion to build and deploy applications, prototypes, or open-source technologies. Demonstrated experience working with large foundation models and state-of-the-art ML frameworks and toolkits. A team player mindset, characterized by effective communication, collaboration, and feedback skills. Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities Leverage full-stack software engineering skills to build, test, and deploy robust and intuitive AI based technologies. Work closely with researchers and engineers to rapidly develop and test research ideas and drive a high-impact agenda. Collaborate with product partners to integrate and test new ideas within existing frameworks and toolchains. Embody our culture and values.


Apply

Location Sunnyvale, CA Bellevue, WA Seattle, WA


Description The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Science Manager with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems.

As an Applied Science Manager with the AGI team, you will lead the development of novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision.


Apply

ASML US, including its affiliates and subsidiaries, bring together the most creative minds in science and technology to develop lithography machines that are key to producing faster, cheaper, more energy-efficient microchips. We design, develop, integrate, market and service these advanced machines, which enable our customers - the world’s leading chipmakers - to reduce the size and increase the functionality of their microchips, which in turn leads to smaller, more powerful consumer electronics. Our headquarters are in Veldhoven, Netherlands and we have 18 office locations around the United States including main offices in Chandler, Arizona, San Jose and San Diego, California, Wilton, Connecticut, and Hillsboro, Oregon.

ASML’s Optical Sensing (Wafer Alignment Sensor and YieldStar) department in Wilton, Connecticut is seeking a Design Engineer to support and develop complex optical/photonic sensor systems used within ASML’s photolithography tools. These systems typically include light sources, detectors, optical/electro-optical components, fiber optics, electronics and signal processing software functioning in close collaboration with the rest of the lithography system. As a design engineer, you will design, develop, build and integrate optical sensor systems.

Role and Responsibilities Use general Physics, Optics, Software knowledge and an understanding of the sensor systems and tools to develop optical alignment sensors in lithography machines Have hands-on sills of building optical systems (e.g. imaging, testing, alignment, detector system, etc.) Have strong data analysis sills to evaluate sensor performance and troubleshooting Leadership:

Lead executing activities for determining problem root cause, execute complex tests, gather data and effectively communicate results on different levels of abstraction (from technical colleagues to high level managers) Lead engineers in various competencies (e.g. software, electronics, equipment engineering, manufacturing engineering, etc.) in support of feature delivery for alignment sensors Problem Solving: Troubleshooting complex technical problems Develop/debug data signal processing algorithms Develop and execute test plans in order to determine problem root cause Communications/Teamwork: Draw conclusions based on the input from different stakeholders Capability to clearly communicate the information on different level of abstraction Programming: Implement data analysis techniques into functioning MATLAB codes Optimization skills GUI building experience Familiarly with LabView and Python Some travel (up to 10%) to Europe, Asia and within the US can be expected


Apply

The Prediction & Behavior ML team is responsible for developing machine-learned models that understand the full scene around our vehicle and forecast the behavior for other agents, our own vehicle’s actions, and for offline applications. To solve these problems we develop deep learning algorithms that can learn behaviors from data and apply them on-vehicle to influence our vehicle’s driving behavior and offline to provide learned models to autonomy simulation and validation. Given the tight integration of behavior forecasting and motion planning, our team necessarily works very closely with the Planner team in the advancement of our overall vehicle behavior. The Prediction & Behavior ML team also works closely with our Perception, Simulation, and Systems Engineering teams on many cross-team initiatives.


Apply

Zoox is looking for a software engineer to join our Perception team and help us build novel architectures for classifying and understanding the complex and dynamic environments in our cities. In this role, you will have access to the best sensor data in the world and an incredible infrastructure for testing and validating your algorithms. We are creating new algorithms for segmentation, tracking, classification, and high-level scene understanding, and you could work on any (or all!) of these components.

We're looking for engineers with advanced degrees and experience building perception pipelines that work with real data in rapidly changing and uncertain environments.


Apply

Redmond, Washington, United States


Overview Are you interested in developing and optimizing deep learning systems? Are you interested in designing novel technology to accelerate their training and serving for cutting edge models and applications? Do you want to scale large Artificial Intelligence models to their limits on massive supercomputers? Are you interested in being part of an exciting open-source library for deep learning systems? The DeepSpeed team is hiring!

Microsoft's DeepSpeed is an open-source library built on the PyTorch (machine learning framework) ecosystem that combines numerous research innovations and technology advancements to make deep learning efficient and easier to use. DeepSpeed can parallelize across thousands of GPUs and train models with trillions of parameters. Our OSS (Open Source Software) has powered many advanced models like MT-530B and BLOOM, and it supports unprecedented scale and speed for both training and inference.

The DeepSpeed team is also part of the larger Microsoft AI at Scale initiative, which is pioneering the next-generation AI capabilities that are scaled across the company’s products and AI platforms.

The DeepSpeed team is looking for a Senior Researcher in Redmond, WA with passion for innovations and for building high-quality systems that will make significant impact inside and outside of Microsoft. Our team is highly collaborative, innovative, and end-user obsessed. We are looking for candidates with systems skills and passionate about driving innovations to improve the efficiency and effectiveness of deep learning systems. We value creativity, agility, accountability, and a desire to learn new technologies.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond.

Responsibilities Excels in one or more subareas and gains expertise in a broad area of research. Identifies and articulates problems in an area of research that are academically novel and may directly or indirectly impact business opportunities. Collaborates with other relevant researchers or research groups to contribute to or advance a research agenda. Researches and develops an understanding of the state-of-the-art insights, tools, technologies, or methods being used in the research community. Expands collaborative relationships with relevant product and business groups inside or outside of Microsoft and provides expertise or technology to them.


Apply

Redmond, Washington, United States


Overview We are seeking a Principal Research Engineer to join our organization and help improve steerability and control Large Language Models (LLMs) and other AI systems. Our team currently develops Guidance, a fully open-source project that enables developers to control language models more precisely and efficiently with constrained decoding.

As a Principal Research Engineer, you will play a crucial role in advancing the frontier of constrained decoding and imagining new application programming interface (APIs) for language models. If you’re excited about links between formal grammars and generative AI, deeply understanding and optimizing LLM inference, enabling more responsible AI without finetuning and RLHF, and/or exploring fundamental changes to the “text-in, text-out” API, we’d love to hear from you. Our team offers a vibrant environment for cutting-edge, multidisciplinary research. We have a long track record of open-source code and open publication policies, and you’ll have the opportunity to collaborate with world-leading experts across Microsoft and top academic institutions across the world.

Microsoft’s mission is to empower every person and every organization on the planet to achieve more. As employees we come together with a growth mindset, innovate to empower others, and collaborate to realize our shared goals. Each day we build on our values of respect, integrity, and accountability to create a culture of inclusion where everyone can thrive at work and beyond. In alignment with our Microsoft values, we are committed to cultivating an inclusive work environment for all employees to positively impact our culture every day.

Responsibilities Develop and implement new constrained decoding research techniques for increasing LLM inference quality and/or efficiency. Example areas of interest include speculative execution, new decoding strategies (e.g. extensions to beam search), “classifier in the loop” decoding for responsible AI, improving AI planning, and explorations of attention-masking based constraints. Re-imagine the use and construction of context-free grammars (CFG) and beyond to fit Generative AI. Examples of improvements here include better tools for constructing formal grammars, extensions to Earley parsing, and efficient batch processing for constrained generation. Consideration of how these techniques are presented to developers – who may not be well versed in grammars and constrained generation -- in an intuitive, idiomatic programming syntax is also top of mind. Design principled evaluation frameworks and benchmarks for measuring the effects of constrained decoding on a model. Some areas of interest to study carefully include efficiency (token throughput and latency), generation quality, and impacts of constrained decoding on AI safety. Publish your research in top AI conferences and contribute your research advances to the guidance open-source project. Other

Embody our Culture and Values


Apply

Vancouver


Who we are Established in 2017, Wayve is a leader in autonomous vehicle technology, driven by breakthroughs in Embodied AI. Our intelligent, mapless, and hardware-agnostic technologies empower vehicles to navigate complex environments effortlessly.

Supported by prominent investors, Wayve is advancing the transition from assisted to fully automated driving, making transportation safer, more efficient, and universally accessible. Join our world-class, multinational team of engineers and researchers as we push the boundaries of frontier AI and autonomous driving, creating impactful technologies and products on a global scale

Where you will have an impact Science is the team that is advancing our end-to-end autonomous driving research. The team’s mission is to accelerate our journey to AV2.0 and ensure the future success of Wayve by incubating and investing in new ideas that have the potential to become game-changing technological advances for the company.

As the first Research Manager in our Vancouver office, you will be responsible for managing & scaling a strong Science team in collaboration with other Wayve science teams in London and Mountain View. You will provide coaching and guidance to each of the researchers and engineers within your team and work with leaders across the company to ensure sustainable career growth for your team during a period of growth in the company. You will participate in our project-based operating model where your focus will be unlocking the potential of your team and its technical leaders to drive industry-leading impact. As part of your work, you will help identify the right projects to invest in, ensure the right allocation of resources to those projects, keep the team in good health, provide technical feedback to your team, share progress to build momentum, and build alignment and strong collaboration across the wider Science organisation. We are actively hiring and aim to substantially grow our research team over the next two years and you will be at the heart of this.

Challenges you will own Work closely with team members to develop career plans and growth trajectories based on each individual’s strengths and weaknesses and their own aspirations. Work closely with project leads to ensure team members are having strong impact and are set up for success. Work closely with project leads and Science leadership to ensure projects are resourced in a way that balances the needs of the business with the needs of the individuals. Offer coaching and technical mentorship to direct reports (especially project leads). Bring technical & project management expertise and experience to help accelerate our progress and decision-making. Challenge the status quo (both technical and organisational/process). Prioritize effectively and keep processes lean and effective. Partner with leadership to maintain a culture of cross-boundary collaboration, impact, innovation, and health. Grow the team as a hiring manager, to bring in complementary, diverse skill sets and backgrounds. Anticipate the needs of the business 6-24 months out, identify areas where additional resources are needed or we need to grow new domain expertise, and pitch this to leadership for investment. Contribute to the day-to-day running of the Science team’s operations and larger collaborative efforts.


Apply

Location Seattle, WA Palo Alto, CA


Description Amazon’s product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on an AI-first initiative to continue to improve the way we do search through the use of large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced multi-modal deep-learning models on very large scale datasets, specifically through the use of advanced systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge Computer Vision and Deep Learning technologies and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: * How can multi-modal inputs in deep-learning models help us deliver delightful shopping experiences to millions of Amazon customers? * Can combining multi-modal data and very large scale deep-learning models help us provide a step-function improvement to the overall model understanding and reasoning capabilities? We are looking for exceptional scientists who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization.


Apply

Location Seattle, WA


Description Interested in solving challenging problems using latest developments in Large Language Models and Artificial Intelligence (AI)? Amazon's Consumer Electronics Technology (CE Tech) organization is redefining shopping experiences leveraging state of the art AI technologies. We are looking for a talented Sr. Applied Scientist with a solid background in the design and development of scalable AI and ML systems and services, deep passion for building ML-powered products, a proven track record of executing complex projects, and delivering high business and customer impact. You will help us shape the future of shopping experiences. As a member of our team, you'll work on cutting-edge projects that directly impact millions of customers, selling partners, and employees every single day. This role will provide exposure to state-of-the-art innovations in AI/ML systems (including GenAI). Technologies you will have exposure to, and/or will work with, include AWS Bedrock, Amazon Q, SageMaker, and Foundational Models such as Anthropic’s Claude / Mistral, among others.


Apply

You will join a team of 40+ Researchers and Engineers within the R&D Department working on cutting edge challenges in the Generative AI space, with a focus on creating highly realistic, emotional and life-like Synthetic humans through text-to-video. Within the team you’ll have the opportunity to work with different research teams and squads across multiple areas led by our Director of Science, Prof. Vittorio Ferrari, and directly impact our solutions that are used worldwide by over 55,000 businesses.

If you have seen the full ML lifecycle from ideation through implementation, testing and release, and you have a passion for large data, large model training and building solutions with clean code, this is your chance. This is an opportunity to work for a company that is impacting businesses at a rapid pace across the globe.


Apply

※Location※ South Korea Seoul / Pangyo


※Description※ 1) Deep learning compression and optimization - Development of algorithms for compression and optimization of deep learning networks - Perform deep learning network embedding (requires understanding of HW platform)

2) AD vision recognition SW - Development of deep learning recognition technology based on sensors such as cameras - Development of pre- and post-processing algorithms and function output - Development of optimization of image recognition algorithm

3) AD decision/control SW - Development of information-based map generation technology recognized by many vehicles - Development of learning-based nearby object behavior prediction model - Development of driving mode determination and collision prevention function of Lv 3 autonomous driving system


Apply

London


Who are we?

Our team is the first in the world to use autonomous vehicles on public roads using end-to-end deep learning, computer vision and reinforcement learning. Leveraging our multi-national world-class team of researchers and engineers, we’re using data to learn more intelligent algorithms to bring autonomy for everyone, everywhere. We aim to be the future of self-driving cars, learning from experience and data.

Where you’ll have an impact

We are currently looking for people with research expertise in AI applied to autonomous driving or similar robotics or decision making domain, inclusive, but not limited to the following specific areas:

Foundation models for robotics Model-free and model-based reinforcement learning Offline reinforcement learning Large language models Planning with learned models, model predictive control and tree search Imitation learning, inverse reinforcement learning and causal inference Learned agent models: behavioral and physical models of cars, people, and other dynamic agents You'll be working on some of the world's hardest problems, and able to attack them in new ways. You'll be a key member of our diverse, cross-disciplinary team, helping teach our robots how to drive safely and comfortably in complex real-world environments. This encompasses many aspects of research across perception, prediction, planning, and control, including:

How to leverage our large, rich, and diverse sources of real-world driving data How to architect our models to best employ the latest advances in foundation models, transformers, world models, etc. Which learning algorithms to use (e.g. reinforcement learning, behavioural cloning) How to leverage simulation for controlled experimental insight, training data augmentation, and re-simulation How to scale models efficiently across data, model size, and compute, while maintaining efficient deployment on the car You also have the potential to contribute to academic publications for top-tier conferences like NeurIPS, CVPR, ICRA, ICLR, CoRL etc. working in a world-class team to achieve this.

What you’ll bring to Wayve

Thorough knowledge of and 5+ years applied experience in AI research, computer vision, deep learning, reinforcement learning or robotics Ability to deliver high quality code and familiarity with deep learning frameworks (Python and Pytorch preferred) Experience leading a research agenda aligned with larger goals Industrial and / or academic experience in deep learning, software engineering, automotive or robotics Experience working with training data, metrics, visualisation tools, and in-depth analysis of results Ability to understand, author and critique cutting-edge research papers Familiarity with code-reviewing, C++, Linux, Git is a plus PhD in a relevant area and / or track records of delivering value through machine learning are a big plus. What we offer you

Attractive compensation with salary and equity Immersion in a team of world-class researchers, engineers and entrepreneurs A unique position to shape the future of autonomy and tackle the biggest challenge of our time Bespoke learning and development opportunities Relocation support with visa sponsorship Flexible working hours - we trust you to do your job well, at times that suit you and your time Benefits such as an onsite chef, workplace nursery scheme, private health insurance, therapy, daily yoga, onsite bar, large social budgets, unlimited L&D requests, enhanced parental leave, and more!


Apply

Location San Diego


Description

At Qualcomm, we are transforming the automotive industry with our Snapdragon Digital Chassis and building the next generation software defined vehicle (SDV).

Snapdragon Ride is an integral pillar of our Snapdragon Digital Chassis, and since its launch it has gained momentum with a growing number of global automakers and Tier1 suppliers. Snapdragon Ride aims to address the complexity of autonomous driving and ADAS by leveraging its high-performance, power-efficient SoC, industry-leading artificial intelligence (AI) technologies and pioneering vision and drive policy stack to deliver a comprehensive, cost and energy efficient systems solution.

Enabling safe, comfortable, and affordable autonomous driving includes solving some of the most demanding and challenging technological problems. From centimeter-level localization to multimodal sensor perception, sensor fusion, behavior prediction, maneuver planning, and trajectory planning and control, each one of these functions introduces its own unique challenges to solve, verify, test, and deploy on the road.

We are looking for smart, innovative and motivated individuals with strong theory background in deep learning, advanced signal processing, probability & algorithms and good implementation skills in python/C++. Job responsibilities include design and development of novel algorithms for solving complex problems related to behavior prediction for autonomous driving, including trajectory and intention prediction. Develop novel deep learning models to predict trajectories for road users and optimize them to run-in real-time systems. Work closely with sensor fusion and planning team on defining requirements and KPIs. Work closely with test engineers to develop test plans for validating performance in simulations and real-world testing.

Minimum Qualifications: • Bachelor's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 6+ years of Systems Engineering or related work experience. OR Master's degree in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 5+ years of Systems Engineering or related work experience. OR PhD in Computer Science, Electrical Engineering, Mechanical Engineering, or related field and 4+ years of Systems Engineering or related work experience.Preferred Qualifications: Ph.D + 2 years industry experience in behavior and trajectory prediction Proficient in variety of deep learning models like CNN, Transformer, RNN, LSTM, VAE, GraphCNN etc Experience working with NLP Deep Learning Networks Proficient in state of the art in machine learning tools (pytorch, tensor flow) 3+ years of experience with Programming Language such as C, C++, Python, etc. 3+ years Systems Engineering, or related work experience in the area of behavior and trajectory prediction. Experience working with, modifying, and creating advanced algorithms Analytical and scientific mindset, with the ability to solve complex problems. Experience in Autonomous driving, Robotics, XR/AR/VR Experience with robust software design for safety-critical systems Excellent written and verbal communication skills, ability to work with a cross-functional team


Apply