Skip to yearly menu bar Skip to main content


Timezone: America/Vancouver

Remarks: Opening Ceremony Tue 20 Jun 08:30 a.m.  

Greg Mori

Invited Talk: Rodney Brooks

Revisiting Old Ideas With Modern Hardware

Many computer vision ideas have been revisited again and again and again, including current modern computer vision based on neural computation. This round has led to incredible developments in computational hardware. Might such powerful computation breathe life into older neglected ideas?

Rodney Brooks

 

Rodney Brooks came to the US from Australia in 1977. His PhD (1981) work at the Stanford Artificial Intelligence Lab was in model based computer vision in the "hand-eye group". After post-docs at CMU and MIT he joined the faculty at Stanford for one year, then joined the MIT faculty in 1984. There he formed a robotics research group that developed mobile and humanoid robots, many of which were vision-based. In 1987 he and Takeo Kanade founded the International Journal of Computer Vision. He became director of the MIT Artificial Intelligence Lab in 1997 and in 2003 he became the founding director of MIT CSAIL (Computer Science and Artificial Intelligence Lab). Along the way he has founded six startups, including iRobot, Rethink Robotics, and now Robust AI, which is developing a vision based collaborative mobile robot for existing cluttered warehouses.



Poster Session TUE-AM Tue 20 Jun 10:30 a.m.  

Poster
Adithya Pediredla · Srinivasa G. Narasimhan · Maysamreza Chamanzar · Ioannis Gkioulekas

[ West Building Exhibit Halls ABC ]

We introduce a light steering technology that operates at megahertz frequencies, has no moving parts, and costs less than a hundred dollars. Our technology can benefit many projector and imaging systems that critically rely on high-speed, reliable, low-cost, and wavelength-independent light steering, including laser scanning projectors, LiDAR sensors, and fluorescence microscopes. Our technology uses ultrasound waves to generate a spatiotemporally-varying refractive index field inside a compressible medium, such as water, turning the medium into a dynamic traveling lens. By controlling the electrical input of the ultrasound transducers that generate the waves, we can change the lens, and thus steer light, at the speed of sound (1.5 km/s in water). We build a physical prototype of this technology, use it to realize different scanning techniques at megahertz rates (three orders of magnitude faster than commercial alternatives such as galvo mirror scanners), and demonstrate proof-of-concept projector and LiDAR applications. To encourage further innovation towards this new technology, we derive the theory for its fundamental limits and develop a physically-accurate simulator for virtual design. Our technology offers a promising solution for achieving high-speed and low-cost light steering in a variety of applications.

Poster
Yu-Lun Liu · Chen Gao · Andréas Meuleman · Hung-Yu Tseng · Ayush Saraf · Changil Kim · Yung-Yu Chuang · Johannes Kopf · Jia-Bin Huang

[ West Building Exhibit Halls ABC ]

Dynamic radiance field reconstruction methods aim to model the time-varying structure and appearance of a dynamic scene. Existing methods, however, assume that accurate camera poses can be reliably estimated by Structure from Motion (SfM) algorithms. These methods, thus, are unreliable as SfM algorithms often fail or produce erroneous poses on challenging videos with highly dynamic objects, poorly textured surfaces, and rotating camera motion. We address this issue by jointly estimating the static and dynamic radiance fields along with the camera parameters (poses and focal length). We demonstrate the robustness of our approach via extensive quantitative and qualitative experiments. Our results show favorable performance over the state-of-the-art dynamic view synthesis methods.

Poster
Yu Chen · Gim Hee Lee

[ West Building Exhibit Halls ABC ]

Recent works such as BARF and GARF can bundle adjust camera poses with neural radiance fields (NeRF) which is based on coordinate-MLPs. Despite the impressive results, these methods cannot be applied to Generalizable NeRFs (GeNeRFs) which require image feature extractions that are often based on more complicated 3D CNN or transformer architectures. In this work, we first analyze the difficulties of jointly optimizing camera poses with GeNeRFs, and then further propose our DBARF to tackle these issues. Our DBARF which bundle adjusts camera poses by taking a cost feature map as an implicit cost function can be jointly trained with GeNeRFs in a self-supervised manner. Unlike BARF and its follow-up works, which can only be applied to per-scene optimized NeRFs and need accurate initial camera poses with the exception of forward-facing scenes, our method can generalize across scenes and does not require any good initialization. Experiments show the effectiveness and generalization ability of our DBARF when evaluated on real-world datasets. Our code is available at https://aibluefisher.github.io/dbarf.

Poster
Bingfan Zhu · Yanchao Yang · Xulong Wang · Youyi Zheng · Leonidas Guibas

[ West Building Exhibit Halls ABC ]

We propose VDN-NeRF, a method to train neural radiance fields (NeRFs) for better geometry under non-Lambertian surface and dynamic lighting conditions that cause significant variation in the radiance of a point when viewed from different angles. Instead of explicitly modeling the underlying factors that result in the view-dependent phenomenon, which could be complex yet not inclusive, we develop a simple and effective technique that normalizes the view-dependence by distilling invariant information already encoded in the learned NeRFs. We then jointly train NeRFs for view synthesis with view-dependence normalization to attain quality geometry. Our experiments show that even though shape-radiance ambiguity is inevitable, the proposed normalization can minimize its effect on geometry, which essentially aligns the optimal capacity needed for explaining view-dependent variations. Our method applies to various baselines and significantly improves geometry without changing the volume rendering pipeline, even if the data is captured under a moving light source. Code is available at: https://github.com/BoifZ/VDN-NeRF.

Poster
Yifan Jiang · Peter Hedman · Ben Mildenhall · Dejia Xu · Jonathan T. Barron · Zhangyang Wang · Tianfan Xue

[ West Building Exhibit Halls ABC ]

Neural Radiance Fields (NeRFs) are a powerful representation for modeling a 3D scene as a continuous function. Though NeRF is able to render complex 3D scenes with view-dependent effects, few efforts have been devoted to exploring its limits in a high-resolution setting. Specifically, existing NeRF-based methods face several limitations when reconstructing high-resolution real scenes, including a very large number of parameters, misaligned input data, and overly smooth details. In this work, we conduct the first pilot study on training NeRF with high-resolution data and propose the corresponding solutions: 1) marrying the multilayer perceptron (MLP) with convolutional layers which can encode more neighborhood information while reducing the total number of parameters; 2) a novel training strategy to address misalignment caused by moving objects or small camera calibration errors; and 3) a high-frequency aware loss. Our approach is nearly free without introducing obvious training/testing costs, while experiments on different datasets demonstrate that it can recover more high-frequency details compared with the current state-of-the-art NeRF models. Project page: https://yifanjiang19.github.io/alignerf.

Poster
Deborah Levy · Amit Peleg · Naama Pearl · Dan Rosenbaum · Derya Akkaynak · Simon Korman · Tali Treibitz

[ West Building Exhibit Halls ABC ]

Research on neural radiance fields (NeRFs) for novel view generation is exploding with new models and extensions. However, a question that remains unanswered is what happens in underwater or foggy scenes where the medium strongly influences the appearance of objects. Thus far, NeRF and its variants have ignored these cases. However, since the NeRF framework is based on volumetric rendering, it has inherent capability to account for the medium’s effects, once modeled appropriately. We develop a new rendering model for NeRFs in scattering media, which is based on the SeaThru image formation model, and suggest a suitable architecture for learning both scene information and medium parameters. We demonstrate the strength of our method using simulated and real-world scenes, correctly rendering novel photorealistic views underwater. Even more excitingly, we can render clear views of these scenes, removing the medium between the camera and the scene and reconstructing the appearance and depth of far objects, which are severely occluded by the medium. Our code and unique datasets are available on the project’s website.

Poster
Brian K. S. Isaac-Medina · Chris G. Willcocks · Toby P. Breckon

[ West Building Exhibit Halls ABC ]

Neural Radiance Fields (NeRF) have attracted significant attention due to their ability to synthesize novel scene views with great accuracy. However, inherent to their underlying formulation, the sampling of points along a ray with zero width may result in ambiguous representations that lead to further rendering artifacts such as aliasing in the final scene. To address this issue, the recent variant mip-NeRF proposes an Integrated Positional Encoding (IPE) based on a conical view frustum. Although this is expressed with an integral formulation, mip-NeRF instead approximates this integral as the expected value of a multivariate Gaussian distribution. This approximation is reliable for short frustums but degrades with highly elongated regions, which arises when dealing with distant scene objects under a larger depth of field. In this paper, we explore the use of an exact approach for calculating the IPE by using a pyramid-based integral formulation instead of an approximated conical-based one. We denote this formulation as Exact-NeRF and contribute the first approach to offer a precise analytical solution to the IPE within the NeRF domain. Our exploratory work illustrates that such an exact formulation (Exact-NeRF) matches the accuracy of mip-NeRF and furthermore provides a natural extension to more challenging scenarios without …

Poster
Liao Wang · Qiang Hu · Qihan He · Ziyu Wang · Jingyi Yu · Tinne Tuytelaars · Lan Xu · Minye Wu

[ West Building Exhibit Halls ABC ]

The success of the Neural Radiance Fields (NeRFs) for modeling and free-view rendering static objects has inspired numerous attempts on dynamic scenes. Current techniques that utilize neural rendering for facilitating free-view videos (FVVs) are restricted to either offline rendering or are capable of processing only brief sequences with minimal motion. In this paper, we present a novel technique, Residual Radiance Field or ReRF, as a highly compact neural representation to achieve real-time FVV rendering on long-duration dynamic scenes. ReRF explicitly models the residual information between adjacent timestamps in the spatial-temporal feature space, with a global coordinate-based tiny MLP as the feature decoder. Specifically, ReRF employs a compact motion grid along with a residual feature grid to exploit inter-frame feature similarities. We show such a strategy can handle large motions without sacrificing quality. We further present a sequential training scheme to maintain the smoothness and the sparsity of the motion/residual grids. Based on ReRF, we design a special FVV codec that achieves three orders of magnitudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes. Extensive experiments demonstrate the effectiveness of ReRF for compactly representing dynamic radiance fields, enabling an unprecedented free-viewpoint …

Poster
Han Yan · Celong Liu · Chao Ma · Xing Mei

[ West Building Exhibit Halls ABC ]

In this paper, we present a new representation for neural radiance fields that accelerates both the training and the inference processes with VDB, a hierarchical data structure for sparse volumes. VDB takes both the advantages of sparse and dense volumes for compact data representation and efficient data access, being a promising data structure for NeRF data interpolation and ray marching. Our method, Plenoptic VDB (PlenVDB), directly learns the VDB data structure from a set of posed images by means of a novel training strategy and then uses it for real-time rendering. Experimental results demonstrate the effectiveness and the efficiency of our method over previous arts: First, it converges faster in the training process. Second, it delivers a more compact data format for NeRF data presentation. Finally, it renders more efficiently on commodity graphics hardware. Our mobile PlenVDB demo achieves 30+ FPS, 1280x720 resolution on an iPhone12 mobile phone. Check plenvdb.github.io for details.

Poster
Xin Huang · Qi Zhang · Ying Feng · Xiaoyu Li · Xuan Wang · Qing Wang

[ West Building Exhibit Halls ABC ]

We propose LIRF (Local Implicit Ray Function), a generalizable neural rendering approach for novel view rendering. Current generalizable neural radiance fields (NeRF) methods sample a scene with a single ray per pixel and may therefore render blurred or aliased views when the input views and rendered views observe scene content at different resolutions. To solve this problem, we propose LIRF to aggregate the information from conical frustums to construct a ray. Given 3D positions within conical frustums, LIRF takes 3D coordinates and the features of conical frustums as inputs and predicts a local volumetric radiance field. Since the coordinates are continuous, LIRF renders high-quality novel views at a continuously-valued scale via volume rendering. Besides, we predict the visible weights for each input view via transformer-based feature matching to improve the performance in occluded areas. Experimental results on real-world scenes validate that our method outperforms state-of-the-art methods on novel view rendering of unseen scenes at arbitrary scales.

Poster
Yiming Gao · Yan-Pei Cao · Ying Shan

[ West Building Exhibit Halls ABC ]

Online reconstructing and rendering of large-scale indoor scenes is a long-standing challenge. SLAM-based methods can reconstruct 3D scene geometry progressively in real time but can not render photorealistic results. While NeRF-based methods produce promising novel view synthesis results, their long offline optimization time and lack of geometric constraints pose challenges to efficiently handling online input. Inspired by the complementary advantages of classical 3D reconstruction and NeRF, we thus investigate marrying explicit geometric representation with NeRF rendering to achieve efficient online reconstruction and high-quality rendering. We introduce SurfelNeRF, a variant of neural radiance field which employs a flexible and scalable neural surfel representation to store geometric attributes and extracted appearance features from input images. We further extend conventional surfel-based fusion scheme to progressively integrate incoming input frames into the reconstructed global neural scene representation. In addition, we propose a highly-efficient differentiable rasterization scheme for rendering neural surfel radiance fields, which helps SurfelNeRF achieve 10× speedups in training and inference time, respectively. Experimental results show that our method achieves the state-of-the-art 23.82 PSNR and 29.58 PSNR on ScanNet in feedforward inference and per-scene optimization settings, respectively.

Poster
Yi Zhang · Xiaoyang Huang · Bingbing Ni · Teng Li · Wenjun Zhang

[ West Building Exhibit Halls ABC ]

We develop an effective point cloud rendering pipeline for novel view synthesis, which enables high fidelity local detail reconstruction, real-time rendering and user-friendly editing. In the heart of our pipeline is an adaptive frequency modulation module called Adaptive Frequency Net (AFNet), which utilizes a hypernetwork to learn the local texture frequency encoding that is consecutively injected into adaptive frequency activation layers to modulate the implicit radiance signal. This mechanism improves the frequency expressive ability of the network with richer frequency basis support, only at a small computational budget. To further boost performance, a preprocessing module is also proposed for point cloud geometry optimization via point opacity estimation. In contrast to implicit rendering, our pipeline supports high-fidelity interactive editing based on point cloud manipulation. Extensive experimental results on NeRF-Synthetic, ScanNet, DTU and Tanks and Temples datasets demonstrate the superior performances achieved by our method in terms of PSNR, SSIM and LPIPS, in comparison to the state-of-the-art.

Poster
Ang Cao · Justin Johnson

[ West Building Exhibit Halls ABC ]

Modeling and re-rendering dynamic 3D scenes is a challenging task in 3D vision. Prior approaches build on NeRF and rely on implicit representations. This is slow since it requires many MLP evaluations, constraining real-world applications. We show that dynamic 3D scenes can be explicitly represented by six planes of learned features, leading to an elegant solution we call HexPlane. A HexPlane computes features for points in spacetime by fusing vectors extracted from each plane, which is highly efficient. Pairing a HexPlane with a tiny MLP to regress output colors and training via volume rendering gives impressive results for novel view synthesis on dynamic scenes, matching the image quality of prior work but reducing training time by more than 100×. Extensive ablations confirm our HexPlane design and show that it is robust to different feature fusion mechanisms, coordinate systems, and decoding mechanisms. HexPlane is a simple and effective solution for representing 4D volumes, and we hope they can broadly contribute to modeling spacetime for dynamic 3D scenes.

Poster
Markus Worchel · Marc Alexa

[ West Building Exhibit Halls ABC ]

We show how shadows can be efficiently generated in differentiable rendering of triangle meshes. Our central observation is that pre-filtered shadow mapping, a technique for approximating shadows based on rendering from the perspective of a light, can be combined with existing differentiable rasterizers to yield differentiable visibility information. We demonstrate at several inverse graphics problems that differentiable shadow maps are orders of magnitude faster than differentiable light transport simulation with similar accuracy -- while differentiable rasterization without shadows often fails to converge.

Poster
Peng Dai · Yinda Zhang · Xin Yu · Xiaoyang Lyu · Xiaojuan Qi

[ West Building Exhibit Halls ABC ]

Rendering novel view images is highly desirable for many applications. Despite recent progress, it remains challenging to render high-fidelity and view-consistent novel views of large-scale scenes from in-the-wild images with inevitable artifacts (e.g., motion blur). To this end, we develop a hybrid neural rendering model that makes image-based representation and neural 3D representation join forces to render high-quality, view-consistent images. Besides, images captured in the wild inevitably contain artifacts, such as motion blur, which deteriorates the quality of rendered images. Accordingly, we propose strategies to simulate blur effects on the rendered images to mitigate the negative influence of blurriness images and reduce their importance during training based on precomputed quality-aware weights. Extensive experiments on real and synthetic data demonstrate our model surpasses state-of-the-art point-based methods for novel view synthesis. The code is available at https://daipengwa.github.io/Hybrid-Rendering-ProjectPage.

Poster
Haian Jin · Isabella Liu · Peijia Xu · Xiaoshuai Zhang · Songfang Han · Sai Bi · Xiaowei Zhou · Zexiang Xu · Hao Su

[ West Building Exhibit Halls ABC ]

We propose TensoIR, a novel inverse rendering approach based on tensor factorization and neural fields. Unlike previous works that use purely MLP-based neural fields, thus suffering from low capacity and high computation costs, we extend TensoRF, a state-of-the-art approach for radiance field modeling, to estimate scene geometry, surface reflectance, and environment illumination from multi-view images captured under unknown lighting conditions. Our approach jointly achieves radiance field reconstruction and physically-based model estimation, leading to photo-realistic novel view synthesis and relighting. Benefiting from the efficiency and extensibility of the TensoRF-based representation, our method can accurately model secondary shading effects (like shadows and indirect lighting) and generally support input images captured under a single or multiple unknown lighting conditions. The low-rank tensor representation allows us to not only achieve fast and compact reconstruction but also better exploit shared information under an arbitrary number of capturing lighting conditions. We demonstrate the superiority of our method to baseline methods qualitatively and quantitatively on various challenging synthetic and real-world scenes.

Poster
Jingwang Ling · Zhibo Wang · Feng Xu

[ West Building Exhibit Halls ABC ]

By supervising camera rays between a scene and multi-view image planes, NeRF reconstructs a neural scene representation for the task of novel view synthesis. On the other hand, shadow rays between the light source and the scene have yet to be considered. Therefore, we propose a novel shadow ray supervision scheme that optimizes both the samples along the ray and the ray location. By supervising shadow rays, we successfully reconstruct a neural SDF of the scene from single-view images under multiple lighting conditions. Given single-view binary shadows, we train a neural network to reconstruct a complete scene not limited by the camera’s line of sight. By further modeling the correlation between the image colors and the shadow rays, our technique can also be effectively extended to RGB inputs. We compare our method with previous works on challenging tasks of shape reconstruction from single-view binary shadow or RGB images and observe significant improvements. The code and data are available at https://github.com/gerwang/ShadowNeuS.

Poster
S. Mahdi H. Miangoleh · Zoya Bylinskii · Eric Kee · Eli Shechtman · Yağiz Aksoy

[ West Building Exhibit Halls ABC ]

Common editing operations performed by professional photographers include the cleanup operations: de-emphasizing distracting elements and enhancing subjects. These edits are challenging, requiring a delicate balance between manipulating the viewer’s attention while maintaining photo realism. While recent approaches can boast successful examples of attention attenuation or amplification, most of them also suffer from frequent unrealistic edits. We propose a realism loss for saliency-guided image enhancement to maintain high realism across varying image types, while attenuating distractors and amplifying objects of interest. Evaluations with professional photographers confirm that we achieve the dual objective of realism and effectiveness, and outperform the recent approaches on their own datasets, while requiring a smaller memory footprint and runtime. We thus offer a viable solution for automating image enhancement and photo cleanup operations.

Poster
Yiqun Mei · He Zhang · Xuaner Zhang · Jianming Zhang · Zhixin Shu · Yilin Wang · Zijun Wei · Shi Yan · HyunJoon Jung · Vishal M. Patel

[ West Building Exhibit Halls ABC ]

Recent portrait relighting methods have achieved realistic results of portrait lighting effects given a desired lighting representation such as an environment map. However, these methods are not intuitive for user interaction and lack precise lighting control. We introduce LightPainter, a scribble-based relighting system that allows users to interactively manipulate portrait lighting effect with ease. This is achieved by two conditional neural networks, a delighting module that recovers geometry and albedo optionally conditioned on skin tone, and a scribble-based module for relighting. To train the relighting module, we propose a novel scribble simulation procedure to mimic real user scribbles, which allows our pipeline to be trained without any human annotations. We demonstrate high-quality and flexible portrait lighting editing capability with both quantitative and qualitative experiments. User study comparisons with commercial lighting editing tools also demonstrate consistent user preference for our method.

Poster
Xianmin Xu · Yuxin Lin · Haoyang Zhou · Chong Zeng · Yaxin Yu · Kun Zhou · Hongzhi Wu

[ West Building Exhibit Halls ABC ]

We propose a unified structured light, consisting of an LED array and an LCD mask, for high-quality acquisition of both shape and reflectance from a single view. For geometry, one LED projects a set of learned mask patterns to accurately encode spatial information; the decoded results from multiple LEDs are then aggregated to produce a final depth map. For appearance, learned light patterns are cast through a transparent mask to efficiently probe angularly-varying reflectance. Per-point BRDF parameters are differentiably optimized with respect to corresponding measurements, and stored in texture maps as the final reflectance. We establish a differentiable pipeline for the joint capture to automatically optimize both the mask and light patterns towards optimal acquisition quality. The effectiveness of our light is demonstrated with a wide variety of physical objects. Our results compare favorably with state-of-the-art techniques.

Poster
Ruichen Zheng · Peng Li · Haoqian Wang · Tao Yu

[ West Building Exhibit Halls ABC ]

Detailed 3D reconstruction and photo-realistic relighting of digital humans are essential for various applications. To this end, we propose a novel sparse-view 3d human reconstruction framework that closely incorporates the occupancy field and albedo field with an additional visibility field--it not only resolves occlusion ambiguity in multiview feature aggregation, but can also be used to evaluate light attenuation for self-shadowed relighting. To enhance its training viability and efficiency, we discretize visibility onto a fixed set of sample directions and supply it with coupled geometric 3D depth feature and local 2D image feature. We further propose a novel rendering-inspired loss, namely TransferLoss, to implicitly enforce the alignment between visibility and occupancy field, enabling end-to-end joint training. Results and extensive experiments demonstrate the effectiveness of the proposed method, as it surpasses state-of-the-art in terms of reconstruction accuracy while achieving comparably accurate relighting to ray-traced ground truth.

Poster
Junbong Jang · Kwonmoo Lee · Tae-Kyun Kim

[ West Building Exhibit Halls ABC ]

Analyzing the dynamic changes of cellular morphology is important for understanding the various functions and characteristics of live cells, including stem cells and metastatic cancer cells. To this end, we need to track all points on the highly deformable cellular contour in every frame of live cell video. Local shapes and textures on the contour are not evident, and their motions are complex, often with expansion and contraction of local contour features. The prior arts for optical flow or deep point set tracking are unsuited due to the fluidity of cells, and previous deep contour tracking does not consider point correspondence. We propose the first deep learning-based tracking of cellular (or more generally viscoelastic materials) contours with point correspondence by fusing dense representation between two contours with cross attention. Since it is impractical to manually label dense tracking points on the contour, unsupervised learning comprised of the mechanical and cyclical consistency losses is proposed to train our contour tracker. The mechanical loss forcing the points to move perpendicular to the contour effectively helps out. For quantitative evaluation, we labeled sparse tracking points along the contour of live cells from two live cell datasets taken with phase contrast and confocal fluorescence …

Poster
Yu-Tao Liu · Li Wang · Jie Yang · Weikai Chen · Xiaoxu Meng · Bo Yang · Lin Gao

[ West Building Exhibit Halls ABC ]

Multi-view shape reconstruction has achieved impressive progresses thanks to the latest advances in neural implicit surface rendering. However, existing methods based on signed distance function (SDF) are limited to closed surfaces, failing to reconstruct a wide range of real-world objects that contain open-surface structures. In this work, we introduce a new neural rendering framework, coded NeUDF, that can reconstruct surfaces with arbitrary topologies solely from multi-view supervision. To gain the flexibility of representing arbitrary surfaces, NeUDF leverages the unsigned distance function (UDF) as surface representation. While a naive extension of SDF-based neural renderer cannot scale to UDF, we propose two new formulations of weight function specially tailored for UDF-based volume rendering. Furthermore, to cope with open surface rendering, where the in/out test is no longer valid, we present a dedicated normal regularization strategy to resolve the surface orientation ambiguity. We extensively evaluate our method over a number of challenging datasets, including DTU, MGN, and Deep Fashion 3D. Experimental results demonstrate that NeUDF can significantly outperform the state-of-the-art method in the task of multi-view surface reconstruction, especially for the complex shapes with open boundaries.

Poster
Xiaoxu Meng · Weikai Chen · Bo Yang

[ West Building Exhibit Halls ABC ]

Recent progress in neural implicit functions has set new state-of-the-art in reconstructing high-fidelity 3D shapes from a collection of images. However, these approaches are limited to closed surfaces as they require the surface to be represented by a signed distance field. In this paper, we propose NeAT, a new neural rendering framework that can learn implicit surfaces with arbitrary topologies from multi-view images. In particular, NeAT represents the 3D surface as a level set of a signed distance function (SDF) with a validity branch for estimating the surface existence probability at the query positions. We also develop a novel neural volume rendering method, which uses SDF and validity to calculate the volume opacity and avoids rendering points with low validity. NeAT supports easy field-to-mesh conversion using the classic Marching Cubes algorithm. Extensive experiments on DTU, MGN, and Deep Fashion 3D datasets indicate that our approach is able to faithfully reconstruct both watertight and non-watertight surfaces. In particular, NeAT significantly outperforms the state-of-the-art methods in the task of open surface reconstruction both quantitatively and qualitatively.

Poster
Zhen Wang · Shijie Zhou · Jeong Joon Park · Despoina Paschalidou · Suya You · Gordon Wetzstein · Leonidas Guibas · Achuta Kadambi

[ West Building Exhibit Halls ABC ]

This work introduces alternating latent topologies (ALTO) for high-fidelity reconstruction of implicit 3D surfaces from noisy point clouds. Previous work identifies that the spatial arrangement of latent encodings is important to recover detail. One school of thought is to encode a latent vector for each point (point latents). Another school of thought is to project point latents into a grid (grid latents) which could be a voxel grid or triplane grid. Each school of thought has tradeoffs. Grid latents are coarse and lose high-frequency detail. In contrast, point latents preserve detail. However, point latents are more difficult to decode into a surface, and quality and runtime suffer. In this paper, we propose ALTO to sequentially alternate between geometric representations, before converging to an easy-to-decode latent. We find that this preserves spatial expressiveness and makes decoding lightweight. We validate ALTO on implicit 3D recovery and observe not only a performance improvement over the state-of-the-art, but a runtime improvement of 3-10×. Anonymized source code at https://visual.ee.ucla.edu/alto.htm/.

Poster
Zhaoyang Lyu · Jinyi Wang · Yuwei An · Ya Zhang · Dahua Lin · Bo Dai

[ West Building Exhibit Halls ABC ]

Mesh generation is of great value in various applications involving computer graphics and virtual content, yet designing generative models for meshes is challenging due to their irregular data structure and inconsistent topology of meshes in the same category. In this work, we design a novel sparse latent point diffusion model for mesh generation. Our key insight is to regard point clouds as an intermediate representation of meshes, and model the distribution of point clouds instead. While meshes can be generated from point clouds via techniques like Shape as Points (SAP), the challenges of directly generating meshes can be effectively avoided. To boost the efficiency and controllability of our mesh generation method, we propose to further encode point clouds to a set of sparse latent points with point-wise semantic meaningful features, where two DDPMs are trained in the space of sparse latent points to respectively model the distribution of the latent point positions and features at these latent points. We find that sampling in this latent space is faster than directly sampling dense point clouds. Moreover, the sparse latent points also enable us to explicitly control both the overall structures and local details of the generated meshes. Extensive experiments are conducted …

Poster
Simon Weber · Nikolaus Demmel · Tin Chon Chan · Daniel Cremers

[ West Building Exhibit Halls ABC ]

We introduce Power Bundle Adjustment as an expansion type algorithm for solving large-scale bundle adjustment problems. It is based on the power series expansion of the inverse Schur complement and constitutes a new family of solvers that we call inverse expansion methods. We theoretically justify the use of power series and we prove the convergence of our approach. Using the real-world BAL dataset we show that the proposed solver challenges the state-of-the-art iterative methods and significantly accelerates the solution of the normal equation, even for reaching a very high accuracy. This easy-to-implement solver can also complement a recently presented distributed bundle adjustment framework. We demonstrate that employing the proposed Power Bundle Adjustment as a sub-problem solver significantly improves speed and accuracy of the distributed optimization.

Poster
Aayush Bansal · Michael Zollhöfer

[ West Building Exhibit Halls ABC ]

We present Neural Pixel Composition (NPC), a novel approach for continuous 3D-4D view synthesis given only a discrete set of multi-view observations as input. Existing state-of-the-art approaches require dense multi-view supervision and an extensive computational budget. The proposed formulation reliably operates on sparse and wide-baseline multi-view imagery and can be trained efficiently within a few seconds to 10 minutes for hi-res (12MP) content, i.e., 200-400X faster convergence than existing methods. Crucial to our approach are two core novelties: 1) a representation of a pixel that contains color and depth information accumulated from multi-views for a particular location and time along a line of sight, and 2) a multi-layer perceptron (MLP) that enables the composition of this rich information provided for a pixel location to obtain the final color output. We experiment with a large variety of multi-view sequences, compare to existing approaches, and achieve better results in diverse and challenging settings.

Poster
Chen-Hsuan Lin · Jun Gao · Luming Tang · Towaki Takikawa · Xiaohui Zeng · Xun Huang · Karsten Kreis · Sanja Fidler · Ming-Yu Liu · Tsung-Yi Lin

[ West Building Exhibit Halls ABC ]

Recently, DreamFusion demonstrated the utility of a pretrained text-to-image diffusion model to optimize Neural Radiance Fields (NeRF), achieving remarkable text-to-3D synthesis results. However, the method has two inherent limitations: 1) optimization of the NeRF representation is extremely slow, 2) NeRF is supervised by images at a low resolution (64×64), thus leading to low-quality 3D models with a long wait time. In this paper, we address these limitations by utilizing a two-stage coarse-to-fine optimization framework. In the first stage, we use a sparse 3D neural representation to accelerate optimization while using a low-resolution diffusion prior. In the second stage, we use a textured mesh model initialized from the coarse neural representation, allowing us to perform optimization with a very efficient differentiable renderer interacting with high-resolution images. Our method, dubbed Magic3D, can create a 3D mesh model in 40 minutes, 2× faster than DreamFusion (reportedly taking 1.5 hours on average), while achieving 8× higher resolution. User studies show 61.7% raters to prefer our approach than DreamFusion. Together with the image-conditioned generation capabilities, we provide users with new ways to control 3D synthesis, opening up new avenues to various creative applications.

Poster
Li Ma · Xiaoyu Li · Jing Liao · Pedro V. Sander

[ West Building Exhibit Halls ABC ]

Looping videos are short video clips that can be looped endlessly without visible seams or artifacts. They provide a very attractive way to capture the dynamism of natural scenes. Existing methods have been mostly limited to 2D representations. In this paper, we take a step forward and propose a practical solution that enables an immersive experience on dynamic 3D looping scenes. The key challenge is to consider the per-view looping conditions from asynchronous input while maintaining view consistency for the 3D representation. We propose a novel sparse 3D video representation, namely Multi-Tile Video (MTV), which not only provides a view-consistent prior, but also greatly reduces memory usage, making the optimization of a 4D volume tractable. Then, we introduce a two-stage pipeline to construct the 3D looping MTV from completely asynchronous multi-view videos with no time overlap. A novel looping loss based on video temporal retargeting algorithms is adopted during the optimization to loop the 3D scene. Experiments of our framework have shown promise in successfully generating and rendering photorealistic 3D looping videos in real time even on mobile devices. The code, dataset, and live demos are available in https://limacv.github.io/VideoLoop3D_web/.

Poster
Jiaxin Xie · Hao Ouyang · Jingtan Piao · Chenyang Lei · Qifeng Chen

[ West Building Exhibit Halls ABC ]

We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views while preserving specific details of the input image. High-fidelity 3D GAN inversion is inherently challenging due to the geometry-texture trade-off, where overfitting to a single view input image often damages the estimated geometry during the latent optimization. To solve this challenge, we propose a novel pipeline that builds on the pseudo-multi-view estimation with visibility analysis. We keep the original textures for the visible parts and utilize generative priors for the occluded parts. Extensive experiments show that our approach achieves advantageous reconstruction and novel view synthesis quality over prior work, even for images with out-of-distribution textures. The proposed pipeline also enables image attribute editing with the inverted latent code and 3D-aware texture modification. Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content. The source code is at https://github.com/jiaxinxie97/HFGI3D/.

Poster
Leheng Li · Qing Lian · Luozhou Wang · Ningning Ma · Ying-Cong Chen

[ West Building Exhibit Halls ABC ]

This work explores the use of 3D generative models to synthesize training data for 3D vision tasks. The key requirements of the generative models are that the generated data should be photorealistic to match the real-world scenarios, and the corresponding 3D attributes should be aligned with given sampling labels. However, we find that the recent NeRF-based 3D GANs hardly meet the above requirements due to their designed generation pipeline and the lack of explicit 3D supervision. In this work, we propose Lift3D, an inverted 2D-to-3D generation framework to achieve the data generation objectives. Lift3D has several merits compared to prior methods: (1) Unlike previous 3D GANs that the output resolution is fixed after training, Lift3D can generalize to any camera intrinsic with higher resolution and photorealistic output. (2) By lifting well-disentangled 2D GAN to 3D object NeRF, Lift3D provides explicit 3D information of generated objects, thus offering accurate 3D annotations for downstream tasks. We evaluate the effectiveness of our framework by augmenting autonomous driving datasets. Experimental results demonstrate that our data generation framework can effectively improve the performance of 3D object detectors. Code: len-li.github.io/lift3d-web

Poster
Fei Yin · Yong Zhang · Xuan Wang · Tengfei Wang · Xiaoyu Li · Yuan Gong · Yanbo Fan · Xiaodong Cun · Ying Shan · Cengiz Oztireli · Yujiu Yang

[ West Building Exhibit Halls ABC ]

Recently, a surge of high-quality 3D-aware GANs have been proposed, which leverage the generative power of neural rendering. It is natural to associate 3D GANs with GAN inversion methods to project a real image into the generator’s latent space, allowing free-view consistent synthesis and editing, referred as 3D GAN inversion. Although with the facial prior preserved in pre-trained 3D GANs, reconstructing a 3D portrait with only one monocular image is still an ill-pose problem. The straightforward application of 2D GAN inversion methods focuses on texture similarity only while ignoring the correctness of 3D geometry shapes. It may raise geometry collapse effects, especially when reconstructing a side face under an extreme pose. Besides, the synthetic results in novel views are prone to be blurry. In this work, we propose a novel method to promote 3D GAN inversion by introducing facial symmetry prior. We design a pipeline and constraints to make full use of the pseudo auxiliary view obtained via image flipping, which helps obtain a view-consistent and well-structured geometry shape during the inversion process. To enhance texture fidelity in unobserved viewpoints, pseudo labels from depth-guided 3D warping can provide extra supervision. We design constraints aimed at filtering out conflict areas for …

Poster
Diqiong Jiang · Dan Song · Ruofeng Tong · Min Tang

[ West Building Exhibit Halls ABC ]

Recent researches reveal that StyleGAN can generate highly realistic images, inspiring researchers to use pretrained StyleGAN to generate high-fidelity swapped faces. However, existing methods fail to meet the expectations in two essential aspects of high-fidelity face swapping. Their results are blurry without pore-level details and fail to preserve identity for challenging cases. To overcome the above artifacts, we innovatively construct a series of identity-preserving semantic bases of StyleGAN (called StyleIPSB) in respect of pose, expression, and illumination. Each basis of StyleIPSB controls one specific semantic attribute and disentangles with the others. The StyleIPSB constrains style code in the subspace of W+ space to preserve pore-level details. StyleIPSB gives us a novel tool for high-fidelity face swapping, and we propose a three-stage framework for face swapping with StyleIPSB. Firstly, we transform the target facial images’ attributes to the source image. We learn the mapping from 3D Morphable Model (3DMM) parameters, which capture the prominent semantic variance, to the coordinates of StyleIPSB that show higher identity-preserving and fidelity. Secondly, to transform detailed attributes which 3DMM does not capture, we learn the residual attribute between the reenacted face and the target face. Finally, the face is blended into the background of the target …

Poster
Haoran Bai · Di Kang · Haoxian Zhang · Jinshan Pan · Linchao Bao

[ West Building Exhibit Halls ABC ]

We present a large-scale facial UV-texture dataset that contains over 50,000 high-quality texture UV-maps with even illuminations, neutral expressions, and cleaned facial regions, which are desired characteristics for rendering realistic 3D face models under different lighting conditions. The dataset is derived from a large-scale face image dataset namely FFHQ, with the help of our fully automatic and robust UV-texture production pipeline. Our pipeline utilizes the recent advances in StyleGAN-based facial image editing approaches to generate multi-view normalized face images from single-image inputs. An elaborated UV-texture extraction, correction, and completion procedure is then applied to produce high-quality UV-maps from the normalized face images. Compared with existing UV-texture datasets, our dataset has more diverse and higher-quality texture maps. We further train a GAN-based texture decoder as the nonlinear texture basis for parametric fitting based 3D face reconstruction. Experiments show that our method improves the reconstruction accuracy over state-of-the-art approaches, and more importantly, produces high-quality texture maps that are ready for realistic renderings. The dataset, code, and pre-trained texture decoder are publicly available at https://github.com/csbhr/FFHQ-UV.

Poster
Chunlu Li · Andreas Morel-Forster · Thomas Vetter · Bernhard Egger · Adam Kortylewski

[ West Building Exhibit Halls ABC ]

In this work, we aim to enhance model-based face reconstruction by avoiding fitting the model to outliers, i.e. regions that cannot be well-expressed by the model such as occluders or make-up. The core challenge for localizing outliers is that they are highly variable and difficult to annotate. To overcome this challenging problem, we introduce a joint Face-autoencoder and outlier segmentation approach (FOCUS).In particular, we exploit the fact that the outliers cannot be fitted well by the face model and hence can be localized well given a high-quality model fitting. The main challenge is that the model fitting and the outlier segmentation are mutually dependent on each other, and need to be inferred jointly. We resolve this chicken-and-egg problem with an EM-type training strategy, where a face autoencoder is trained jointly with an outlier segmentation network. This leads to a synergistic effect, in which the segmentation network prevents the face encoder from fitting to the outliers, enhancing the reconstruction quality. The improved 3D face reconstruction, in turn, enables the segmentation network to better predict the outliers. To resolve the ambiguity between outliers and regions that are difficult to fit, such as eyebrows, we build a statistical prior from synthetic data that …

Poster
Zhenyu Zhang · Renwang Chen · Weijian Cao · Ying Tai · Chengjie Wang

[ West Building Exhibit Halls ABC ]

Generative models show good potential for recovering 3D faces beyond limited shape assumptions. While plausible details and resolutions are achieved, these models easily fail under extreme conditions of pose, shadow or appearance, due to the entangled fitting or lack of multi-view priors. To address this problem, this paper presents a novel Neural Proto-face Field (NPF) for unsupervised robust 3D face modeling. Instead of using constrained images as Neural Radiance Field (NeRF), NPF disentangles the common/specific facial cues, i.e., ID, expression and scene-specific details from in-the-wild photo collections. Specifically, NPF learns a face prototype to aggregate 3D-consistent identity via uncertainty modeling, extracting multi-image priors from a photo collection. NPF then learns to deform the prototype with the appropriate facial expressions, constrained by a loss of expression consistency and personal idiosyncrasies. Finally, NPF is optimized to fit a target image in the collection, recovering specific details of appearance and geometry. In this way, the generative model benefits from multi-image priors and meaningful facial structures. Extensive experiments on benchmarks show that NPF recovers superior or competitive facial shapes and textures, compared to state-of-the-art methods.

Poster
Biwen Lei · Jianqiang Ren · Mengyang Feng · Miaomiao Cui · Xuansong Xie

[ West Building Exhibit Halls ABC ]

Limited by the nature of the low-dimensional representational capacity of 3DMM, most of the 3DMM-based face reconstruction (FR) methods fail to recover high-frequency facial details, such as wrinkles, dimples, etc. Some attempt to solve the problem by introducing detail maps or non-linear operations, however, the results are still not vivid. To this end, we in this paper present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image. Specifically, we implement the geometry disentanglement and introduce the hierarchical representation to fulfill detailed face modeling. Meanwhile, 3D priors of facial details are incorporated to enhance the accuracy and authenticity of the reconstruction results. We also propose a de-retouching module to achieve better decoupling of the geometry and appearance. It is noteworthy that our framework can be extended to a multi-view fashion by considering detail consistency of different views. Extensive experiments on two single-view and two multi-view FR benchmarks demonstrate that our method outperforms the existing methods in both reconstruction accuracy and visual effects. Finally, we introduce a high-quality 3D face dataset FaceHD-100 to boost the research of high-fidelity face reconstruction. The project homepage is at https://younglbw.github.io/HRN-homepage/.

Poster
Kacper Kania · Stephan J. Garbin · Andrea Tagliasacchi · Virginia Estellers · Kwang Moo Yi · Julien Valentin · Tomasz Trzciński · Marek Kowalski

[ West Building Exhibit Halls ABC ]

Generating faithful visualizations of human faces requires capturing both coarse and fine-level details of the face geometry and appearance. Existing methods are either data-driven, requiring an extensive corpus of data not publicly accessible to the research community, or fail to capture fine details because they rely on geometric face models that cannot represent fine-grained details in texture with a mesh discretization and linear deformation designed to model only a coarse face geometry. We introduce a method that bridges this gap by drawing inspiration from traditional computer graphics techniques. Unseen expressions are modeled by blending appearance from a sparse set of extreme poses. This blending is performed by measuring local volumetric changes in those expressions and locally reproducing their appearance whenever a similar expression is performed at test time. We show that our method generalizes to unseen expressions, adding fine-grained effects on top of smooth volumetric deformations of a face, and demonstrate how it generalizes beyond faces.

Poster
Chuhan Chen · Matthew O’Toole · Gaurav Bharaj · Pablo Garrido

[ West Building Exhibit Halls ABC ]

High-quality reconstruction of controllable 3D head avatars from 2D videos is highly desirable for virtual human applications in movies, games, and telepresence. Neural implicit fields provide a powerful representation to model 3D head avatars with personalized shape, expressions, and facial parts, e.g., hair and mouth interior, that go beyond the linear 3D morphable model (3DMM). However, existing methods do not model faces with fine-scale facial features, or local control of facial parts that extrapolate asymmetric expressions from monocular videos. Further, most condition only on 3DMM parameters with poor(er) locality, and resolve local features with a global neural field. We build on part-based implicit shape models that decompose a global deformation field into local ones. Our novel formulation models multiple implicit deformation fields with local semantic rig-like control via 3DMM-based parameters, and representative facial landmarks. Further, we propose a local control loss and attention mask mechanism that promote sparsity of each learned deformation field. Our formulation renders sharper locally controllable nonlinear deformations than previous implicit monocular approaches, especially mouth interior, asymmetric expressions, and facial details. Project page:https://imaging.cs.cmu.edu/localdeformationfields/

Poster
Youxin Pang · Yong Zhang · Weize Quan · Yanbo Fan · Xiaodong Cun · Ying Shan · Dong-Ming Yan

[ West Building Exhibit Halls ABC ]

One-shot video-driven talking face generation aims at producing a synthetic talking video by transferring the facial motion from a video to an arbitrary portrait image. Head pose and facial expression are always entangled in facial motion and transferred simultaneously. However, the entanglement sets up a barrier for these methods to be used in video portrait editing directly, where it may require to modify the expression only while maintaining the pose unchanged. One challenge of decoupling pose and expression is the lack of paired data, such as the same pose but different expressions. Only a few methods attempt to tackle this challenge with the feat of 3D Morphable Models (3DMMs) for explicit disentanglement. But 3DMMs are not accurate enough to capture facial details due to the limited number of Blendshapes, which has side effects on motion transfer. In this paper, we introduce a novel self-supervised disentanglement framework to decouple pose and expression without 3DMMs and paired data, which consists of a motion editing module, a pose generator, and an expression generator. The editing module projects faces into a latent space where pose motion and expression motion can be disentangled, and the pose or expression transfer can be performed in the latent …

Poster
Sijing Wu · Yichao Yan · Yunhao Li · Yuhao Cheng · Wenhan Zhu · Ke Gao · Xiaobo Li · Guangtao Zhai

[ West Building Exhibit Halls ABC ]

To bring digital avatars into people’s lives, it is highly demanded to efficiently generate complete, realistic, and animatable head avatars. This task is challenging, and it is difficult for existing methods to satisfy all the requirements at once. To achieve these goals, we propose GANHead (Generative Animatable Neural Head Avatar), a novel generative head model that takes advantages of both the fine-grained control over the explicit expression parameters and the realistic rendering results of implicit representations. Specifically, GANHead represents coarse geometry, fine-gained details and texture via three networks in canonical space to obtain the ability to generate complete and realistic head avatars. To achieve flexible animation, we define the deformation filed by standard linear blend skinning (LBS), with the learned continuous pose and expression bases and LBS weights. This allows the avatars to be directly animated by FLAME parameters and generalize well to unseen poses and expressions. Compared to state-of-the-art (SOTA) methods, GANHead achieves superior performance on head avatar generation and raw scan fitting.

Poster
Jonathan Tseng · Rodrigo Castellon · Karen Liu

[ West Building Exhibit Halls ABC ]

Dance is an important human art form, but creating new dances can be difficult and time-consuming. In this work, we introduce Editable Dance GEneration (EDGE), a state-of-the-art method for editable dance generation that is capable of creating realistic, physically-plausible dances while remaining faithful to the input music. EDGE uses a transformer-based diffusion model paired with Jukebox, a strong music feature extractor, and confers powerful editing capabilities well-suited to dance, including joint-wise conditioning, and in-betweening. We introduce a new metric for physical plausibility, and evaluate dance quality generated by our method extensively through (1) multiple quantitative metrics on physical plausibility, alignment, and diversity benchmarks, and more importantly, (2) a large-scale user study, demonstrating a significant improvement over previous state-of-the-art methods. Qualitative samples from our model can be found at our website.

Poster
Hugo Bertiche · Niloy J. Mitra · Kuldeep Kulkarni · Chun-Hao P. Huang · Tuanfeng Y. Wang · Meysam Madadi · Sergio Escalera · Duygu Ceylan

[ West Building Exhibit Halls ABC ]

Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.

Poster
Hongwei Yi · Hualin Liang · Yifei Liu · Qiong Cao · Yandong Wen · Timo Bolkart · Dacheng Tao · Michael J. Black

[ West Building Exhibit Halls ABC ]

This work addresses the problem of generating 3D holistic body motions from human speech. Given a speech recording, we synthesize sequences of 3D body poses, hand gestures, and facial expressions that are realistic and diverse. To achieve this, we first build a high-quality dataset of 3D holistic body meshes with synchronous speech. We then define a novel speech-to-motion generation framework in which the face, body, and hands are modeled separately. The separated modeling stems from the fact that face articulation strongly correlates with human speech, while body poses and hand gestures are less correlated. Specifically, we employ an autoencoder for face motions, and a compositional vector-quantized variational autoencoder (VQ-VAE) for the body and hand motions. The compositional VQ-VAE is key to generating diverse results. Additionally, we propose a cross conditional autoregressive model that generates body poses and hand gestures, leading to coherent and realistic motions. Extensive experiments and user studies demonstrate that our proposed approach achieves state-of-the-art performance both qualitatively and quantitatively. Our novel dataset and code will be released for research purposes.

Poster
Yuming Du · Robin Kips · Albert Pumarola · Sebastian Starke · Ali Thabet · Artsiom Sanakoyeu

[ West Building Exhibit Halls ABC ]

With the recent surge in popularity of AR/VR applications, realistic and accurate control of 3D full-body avatars has become a highly demanded feature. A particular challenge is that only a sparse tracking signal is available from standalone HMDs (Head Mounted Devices), often limited to tracking the user’s head and wrists. While this signal is resourceful for reconstructing the upper body motion, the lower body is not tracked and must be synthesized from the limited information provided by the upper body joints. In this paper, we present AGRoL, a novel conditional diffusion model specifically designed to track full bodies given sparse upper-body tracking signals. Our model is based on a simple multi-layer perceptron (MLP) architecture and a novel conditioning scheme for motion data. It can predict accurate and smooth full-body motion, particularly the challenging lower body movement. Unlike common diffusion architectures, our compact architecture can run in real-time, making it suitable for online body-tracking applications. We train and evaluate our model on AMASS motion capture dataset, and demonstrate that our approach outperforms state-of-the-art methods in generated motion accuracy and smoothness. We further justify our design choices through extensive experiments and ablation studies.

Poster
Fang Zhao · Zekun Li · Shaoli Huang · Junwu Weng · Tianfei Zhou · Guo-Sen Xie · Jue Wang · Ying Shan

[ West Building Exhibit Halls ABC ]

This paper proposes an anchor-based deformation model, namely AnchorDEF, to predict 3D garment animation from a body motion sequence. It deforms a garment mesh template by a mixture of rigid transformations with extra nonlinear displacements. A set of anchors around the mesh surface is introduced to guide the learning of rigid transformation matrices. Once the anchor transformations are found, per-vertex nonlinear displacements of the garment template can be regressed in a canonical space, which reduces the complexity of deformation space learning. By explicitly constraining the transformed anchors to satisfy the consistencies of position, normal and direction, the physical meaning of learned anchor transformations in space is guaranteed for better generalization. Furthermore, an adaptive anchor updating is proposed to optimize the anchor position by being aware of local mesh topology for learning representative anchor transformations. Qualitative and quantitative experiments on different types of garments demonstrate that AnchorDEF achieves the state-of-the-art performance on 3D garment deformation prediction in motion, especially for loose-fitting garments.

Poster
Hongwen Zhang · Siyou Lin · Ruizhi Shao · Yuxiang Zhang · Zerong Zheng · Han Huang · Yandong Guo · Yebin Liu

[ West Building Exhibit Halls ABC ]

Creating animatable avatars from static scans requires the modeling of clothing deformations in different poses. Existing learning-based methods typically add pose-dependent deformations upon a minimally-clothed mesh template or a learned implicit template, which have limitations in capturing details or hinder end-to-end learning. In this paper, we revisit point-based solutions and propose to decompose explicit garment-related templates and then add pose-dependent wrinkles to them. In this way, the clothing deformations are disentangled such that the pose-dependent wrinkles can be better learned and applied to unseen poses. Additionally, to tackle the seam artifact issues in recent state-of-the-art point-based methods, we propose to learn point features on a body surface, which establishes a continuous and compact feature space to capture the fine-grained and pose-dependent clothing geometry. To facilitate the research in this field, we also introduce a high-quality scan dataset of humans in real-world clothing. Our approach is validated on two existing datasets and our newly introduced dataset, showing better clothing deformation results in unseen poses. The project page with code and dataset can be found at https://www.liuyebin.com/closet.

Poster
Yuliang Xiu · Jinlong Yang · Xu Cao · Dimitrios Tzionas · Michael J. Black

[ West Building Exhibit Halls ABC ]

The combination of deep learning, artist-curated scans, and Implicit Functions (IF), is enabling the creation of detailed, clothed, 3D humans from images. However, existing methods are far from perfect. IF-based methods recover free-form geometry, but produce disembodied limbs or degenerate shapes for novel poses or clothes. To increase robustness for these cases, existing work uses an explicit parametric body model to constrain surface reconstruction, but this limits the recovery of free-form surfaces such as loose clothing that deviates from the body. What we want is a method that combines the best properties of implicit representation and explicit body regularization. To this end, we make two key observations: (1) current networks are better at inferring detailed 2D maps than full-3D surfaces, and (2) a parametric model can be seen as a “canvas” for stitching together detailed surface patches. Based on these, our method, ECON, has three main steps: (1) It infers detailed 2D normal maps for the front and back side of a clothed person. (2) From these, it recovers 2.5D front and back surfaces, called d-BiNI, that are equally detailed, yet incomplete, and registers these w.r.t. each other with the help of a SMPL-X body mesh recovered from the image. …

Poster
Chung-Yi Weng · Pratul P. Srinivasan · Brian Curless · Ira Kemelmacher-Shlizerman

[ West Building Exhibit Halls ABC ]

We present PersonNeRF, a method that takes a collection of photos of a subject (e.g., Roger Federer) captured across multiple years with arbitrary body poses and appearances, and enables rendering the subject with arbitrary novel combinations of viewpoint, body pose, and appearance. PersonNeRF builds a customized neural volumetric 3D model of the subject that is able to render an entire space spanned by camera viewpoint, body pose, and appearance. A central challenge in this task is dealing with sparse observations; a given body pose is likely only observed by a single viewpoint with a single appearance, and a given appearance is only observed under a handful of different body poses. We address this issue by recovering a canonical T-pose neural volumetric representation of the subject that allows for changing appearance across different observations, but uses a shared pose-dependent motion field across all observations. We demonstrate that this approach, along with regularization of the recovered volumetric geometry to encourage smoothness, is able to recover a model that renders compelling images from novel combinations of viewpoint, pose, and appearance from these challenging unstructured photo collections, outperforming prior work for free-viewpoint human rendering.

Poster
Xiaoxuan Ma · Jiajun Su · Chunyu Wang · Wentao Zhu · Yizhou Wang

[ West Building Exhibit Halls ABC ]

Inspired by the success of volumetric 3D pose estimation, some recent human mesh estimators propose to estimate 3D skeletons as intermediate representations, from which, the dense 3D meshes are regressed by exploiting the mesh topology. However, body shape information is lost in extracting skeletons, leading to mediocre performance. The advanced motion capture systems solve the problem by placing dense physical markers on the body surface, which allows to extract realistic meshes from their non-rigid motions. However, they cannot be applied to wild images without markers. In this work, we present an intermediate representation, named virtual markers, which learns 64 landmark keypoints on the body surface based on the large-scale mocap data in a generative style, mimicking the effects of physical markers. The virtual markers can be accurately detected from wild images and can reconstruct the intact meshes with realistic shapes by simple interpolation. Our approach outperforms the state-of-the-art methods on three datasets. In particular, it surpasses the existing methods by a notable margin on the SURREAL dataset, which has diverse body shapes. Code is available at https://github.com/ShirleyMaxx/VirtualMarker.

Poster
Ziwei Yu · Chen Li · Linlin Yang · Xiaoxu Zheng · Michael Bi Mi · Gim Hee Lee · Angela Yao

[ West Building Exhibit Halls ABC ]

Direct mesh fitting for 3D hand shape reconstruction estimates highly accurate meshes. However, the resulting meshes are prone to artifacts and do not appear as plausible hand shapes. Conversely, parametric models like MANO ensure plausible hand shapes but are not as accurate as the non-parametric methods. In this work, we introduce a novel weakly-supervised hand shape estimation framework that integrates non-parametric mesh fitting with MANO models in an end-to-end fashion. Our joint model overcomes the tradeoff in accuracy and plausibility to yield well-aligned and high-quality 3D meshes, especially in challenging two-hand and hand-object interaction scenarios.

Poster
Yeonguk Oh · JoonKyu Park · Jaeha Kim · Gyeongsik Moon · Kyoung Mu Lee

[ West Building Exhibit Halls ABC ]

Hands, one of the most dynamic parts of our body, suffer from blur due to their active movements. However, previous 3D hand mesh recovery methods have mainly focused on sharp hand images rather than considering blur due to the absence of datasets providing blurry hand images. We first present a novel dataset BlurHand, which contains blurry hand images with 3D groundtruths. The BlurHand is constructed by synthesizing motion blur from sequential sharp hand images, imitating realistic and natural motion blurs. In addition to the new dataset, we propose BlurHandNet, a baseline network for accurate 3D hand mesh recovery from a blurry hand image. Our BlurHandNet unfolds a blurry input image to a 3D hand mesh sequence to utilize temporal information in the blurry input image, while previous works output a static single hand mesh. We demonstrate the usefulness of BlurHand for the 3D hand mesh recovery from blurry images in our experiments. The proposed BlurHandNet produces much more robust results on blurry images while generalizing well to in-the-wild images. The training codes and BlurHand dataset are available at https://github.com/JaehaKim97/BlurHand_RELEASE.

Poster
Congyi Wang · Feida Zhu · Shilei Wen

[ West Building Exhibit Halls ABC ]

Existing methods proposed for hand reconstruction tasks usually parameterize a generic 3D hand model or predict hand mesh positions directly. The parametric representations consisting of hand shapes and rotational poses are more stable, while the non-parametric methods can predict more accurate mesh positions. In this paper, we propose to reconstruct meshes and estimate MANO parameters of two hands from a single RGB image simultaneously to utilize the merits of two kinds of hand representations. To fulfill this target, we propose novel Mesh-Mano interaction blocks (MMIBs), which take mesh vertices positions and MANO parameters as two kinds of query tokens. MMIB consists of one graph residual block to aggregate local information and two transformer encoders to model long-range dependencies. The transformer encoders are equipped with different asymmetric attention masks to model the intra-hand and inter-hand attention, respectively. Moreover, we introduce the mesh alignment refinement module to further enhance the mesh-image alignment. Extensive experiments on the InterHand2.6M benchmark demonstrate promising results over the state-of-the-art hand reconstruction methods.

Poster
Karthik Shetty · Annette Birkhold · Srikrishna Jaganathan · Norbert Strobel · Markus Kowarschik · Andreas Maier · Bernhard Egger

[ West Building Exhibit Halls ABC ]

We introduce PLIKS (Pseudo-Linear Inverse Kinematic Solver) for reconstruction of a 3D mesh of the human body from a single 2D image. Current techniques directly regress the shape, pose, and translation of a parametric model from an input image through a non-linear mapping with minimal flexibility to any external influences. We approach the task as a model-in-the-loop optimization problem. PLIKS is built on a linearized formulation of the parametric SMPL model. Using PLIKS, we can analytically reconstruct the human model via 2D pixel-aligned vertices. This enables us with the flexibility to use accurate camera calibration information when available. PLIKS offers an easy way to introduce additional constraints such as shape and translation. We present quantitative evaluations which confirm that PLIKS achieves more accurate reconstruction with greater than 10% improvement compared to other state-of-the-art methods with respect to the standard 3D human pose and shape benchmarks while also obtaining a reconstruction error improvement of 12.9 mm on the newer AGORA dataset.

Poster
Juntian Zheng · Qingyuan Zheng · Lixing Fang · Yun Liu · Li Yi

[ West Building Exhibit Halls ABC ]

In this work, we focus on a novel task of category-level functional hand-object manipulation synthesis covering both rigid and articulated object categories. Given an object geometry, an initial human hand pose as well as a sparse control sequence of object poses, our goal is to generate a physically reasonable hand-object manipulation sequence that performs like human beings. To address such a challenge, we first design CAnonicalized Manipulation Spaces (CAMS), a two-level space hierarchy that canonicalizes the hand poses in an object-centric and contact-centric view. Benefiting from the representation capability of CAMS, we then present a two-stage framework for synthesizing human-like manipulation animations. Our framework achieves state-of-the-art performance for both rigid and articulated categories with impressive visual effects. Codes and video results can be found at our project homepage: https://cams-hoi.github.io/.

Poster
Yuheng Jiang · Kaixin Yao · Zhuo Su · Zhehao Shen · Haimin Luo · Lan Xu

[ West Building Exhibit Halls ABC ]

Convenient 4D modeling of human-object interactions is essential for numerous applications. However, monocular tracking and rendering of complex interaction scenarios remain challenging. In this paper, we propose Instant-NVR, a neural approach for instant volumetric human-object tracking and rendering using a single RGBD camera. It bridges traditional non-rigid tracking with recent instant radiance field techniques via a multi-thread tracking-rendering mechanism. In the tracking front-end, we adopt a robust human-object capture scheme to provide sufficient motion priors. We further introduce a separated instant neural representation with a novel hybrid deformation module for the interacting scene. We also provide an on-the-fly reconstruction scheme of the dynamic/static radiance fields via efficient motion-prior searching. Moreover, we introduce an online key frame selection scheme and a rendering-aware refinement strategy to significantly improve the appearance details for online novel-view synthesis. Extensive experiments demonstrate the effectiveness and efficiency of our approach for the instant generation of human-object radiance fields on the fly, notably achieving real-time photo-realistic novel view synthesis under complex human-object interactions.

Poster
Bowen Wen · Jonathan Tremblay · Valts Blukis · Stephen Tyree · Thomas Müller · Alex Evans · Dieter Fox · Jan Kautz · Stan Birchfield

[ West Building Exhibit Halls ABC ]

We present a near real-time (10Hz) method for 6-DoF tracking of an unknown object from a monocular RGBD video sequence, while simultaneously performing neural 3D reconstruction of the object. Our method works for arbitrary rigid objects, even when visual texture is largely absent. The object is assumed to be segmented in the first frame only. No additional information is required, and no assumption is made about the interaction agent. Key to our method is a Neural Object Field that is learned concurrently with a pose graph optimization process in order to robustly accumulate information into a consistent 3D representation capturing both geometry and appearance. A dynamic pool of posed memory frames is automatically maintained to facilitate communication between these threads. Our approach handles challenging sequences with large pose changes, partial and full occlusion, untextured surfaces, and specular highlights. We show results on HO3D, YCBInEOAT, and BEHAVE datasets, demonstrating that our method significantly outperforms existing approaches. Project page: https://bundlesdf.github.io/

Poster
Xuan Ju · Ailing Zeng · Jianan Wang · Qiang Xu · Lei Zhang

[ West Building Exhibit Halls ABC ]

Humans have long been recorded in a variety of forms since antiquity. For example, sculptures and paintings were the primary media for depicting human beings before the invention of cameras. However, most current human-centric computer vision tasks like human pose estimation and human image generation focus exclusively on natural images in the real world. Artificial humans, such as those in sculptures, paintings, and cartoons, are commonly neglected, making existing models fail in these scenarios. As an abstraction of life, art incorporates humans in both natural and artificial scenes. We take advantage of it and introduce the Human-Art dataset to bridge related tasks in natural and artificial scenarios. Specifically, Human-Art contains 50k high-quality images with over 123k person instances from 5 natural and 15 artificial scenarios, which are annotated with bounding boxes, keypoints, self-contact points, and text information for humans represented in both 2D and 3D. It is, therefore, comprehensive and versatile for various downstream tasks. We also provide a rich set of baseline results and detailed analyses for related tasks, including human detection, 2D and 3D human pose estimation, image generation, and motion transfer. As a challenging dataset, we hope Human-Art can provide insights for relevant research and open up …

Poster
Mohammed Suhail · Erika Lu · Zhengqi Li · Noah Snavely · Leonid Sigal · Forrester Cole

[ West Building Exhibit Halls ABC ]

We propose a method to decompose a video into a background and a set of foreground layers, where the background captures stationary elements while the foreground layers capture moving objects along with their associated effects (e.g. shadows and reflections). Our approach is designed for unconstrained monocular videos, with arbitrary camera and object motion. Prior work that tackles this problem assumes that the video can be mapped onto a fixed 2D canvas, severely limiting the possible space of camera motion. Instead, our method applies recent progress in monocular camera pose and depth estimation to create a full, RGBD video layer for the background, along with a video layer for each foreground object. To solve the underconstrained decomposition problem, we propose a new loss formulation based on multi-view consistency. We test our method on challenging videos with complex camera motion and show significant qualitative improvement over current approaches.

Poster
Jathushan Rajasegaran · Georgios Pavlakos · Angjoo Kanazawa · Christoph Feichtenhofer · Jitendra Malik

[ West Building Exhibit Halls ABC ]

In this work we study the benefits of using tracking and 3D poses for action recognition. To achieve this, we take the Lagrangian view on analysing actions over a trajectory of human motion rather than at a fixed point in space. Taking this stand allows us to use the tracklets of people to predict their actions. In this spirit, first we show the benefits of using 3D pose to infer actions, and study person-person interactions. Subsequently, we propose a Lagrangian Action Recognition model by fusing 3D pose and contextualized appearance over tracklets. To this end, our method achieves state-of-the-art performance on the AVA v2.2 dataset on both pose only settings and on standard benchmark settings. When reasoning about the action using only pose cues, our pose model achieves +10.0 mAP gain over the corresponding state-of-the-art while our fused model has a gain of +2.8 mAP over the best state-of-the-art model. Code and results are available at: https://brjathu.github.io/LART

Poster
Li’an Zhuo · Jian Cao · Qi Wang · Bang Zhang · Liefeng Bo

[ West Building Exhibit Halls ABC ]

Towards stable human pose estimation from monocular images, there remain two main dilemmas. On the one hand, the different perspectives, i.e., front view, side view, and top view, appear the inconsistent performances due to the depth ambiguity. On the other hand, foot posture plays a significant role in complicated human pose estimation, i.e., dance and sports, and foot-ground interaction, but unfortunately, it is omitted in most general approaches and datasets. In this paper, we first propose the Cross-View Fusion (CVF) module to catch up with better 3D intermediate representation and alleviate the view inconsistency based on the vision transformer encoder. Then the optimization-based method is introduced to reconstruct the foot pose and foot-ground contact for the general multi-view datasets including AIST++ and Human3.6M. Besides, the reversible kinematic topology strategy is innovated to utilize the contact information into the full-body with foot pose regressor. Extensive experiments on the popular benchmarks demonstrate that our method outperforms the state-of-the-art approaches by achieving 40.1mm PA-MPJPE on the 3DPW test set and 43.8mm on the AIST++ test set.

Poster
Zigang Geng · Chunyu Wang · Yixuan Wei · Ze Liu · Houqiang Li · Han Hu

[ West Building Exhibit Halls ABC ]

Human pose is typically represented by a coordinate vector of body joints or their heatmap embeddings. While easy for data processing, unrealistic pose estimates are admitted due to the lack of dependency modeling between the body joints. In this paper, we present a structured representation, named Pose as Compositional Tokens (PCT), to explore the joint dependency. It represents a pose by M discrete tokens with each characterizing a sub-structure with several interdependent joints. The compositional design enables it to achieve a small reconstruction error at a low cost. Then we cast pose estimation as a classification task. In particular, we learn a classifier to predict the categories of the M tokens from an image. A pre-learned decoder network is used to recover the pose from the tokens without further post-processing. We show that it achieves better or comparable pose estimation results as the existing methods in general scenarios, yet continues to work well when occlusion occurs, which is ubiquitous in practice. The code and models are publicly available at https://github.com/Gengzigang/PCT.

Poster
Qihao Liu · Adam Kortylewski · Alan L. Yuille

[ West Building Exhibit Halls ABC ]

Human pose and shape (HPS) estimation methods achieve remarkable results. However, current HPS benchmarks are mostly designed to test models in scenarios that are similar to the training data. This can lead to critical situations in real-world applications when the observed data differs significantly from the training data and hence is out-of-distribution (OOD). It is therefore important to test and improve the OOD robustness of HPS methods. To address this fundamental problem, we develop a simulator that can be controlled in a fine-grained manner using interpretable parameters to explore the manifold of images of human pose, e.g. by varying poses, shapes, and clothes. We introduce a learning-based testing method, termed PoseExaminer, that automatically diagnoses HPS algorithms by searching over the parameter space of human pose images to find the failure modes. Our strategy for exploring this high-dimensional parameter space is a multi-agent reinforcement learning system, in which the agents collaborate to explore different parts of the parameter space. We show that our PoseExaminer discovers a variety of limitations in current state-of-the-art models that are relevant in real-world scenarios but are missed by current benchmarks. For example, it finds large regions of realistic human poses that are not predicted correctly, as …

Poster
Yudi Dai · Yitai Lin · Xiping Lin · Chenglu Wen · Lan Xu · Hongwei Yi · Siqi Shen · Yuexin Ma · Cheng Wang

[ West Building Exhibit Halls ABC ]

We present SLOPER4D, a novel scene-aware dataset collected in large urban environments to facilitate the research of global human pose estimation (GHPE) with human-scene interaction in the wild. Employing a head-mounted device integrated with a LiDAR and camera, we record 12 human subjects’ activities over 10 diverse urban scenes from an egocentric view. Frame-wise annotations for 2D key points, 3D pose parameters, and global translations are provided, together with reconstructed scene point clouds. To obtain accurate 3D ground truth in such large dynamic scenes, we propose a joint optimization method to fit local SMPL meshes to the scene and fine-tune the camera calibration during dynamic motions frame by frame, resulting in plausible and scene-natural 3D human poses. Eventually, SLOPER4D consists of 15 sequences of human motions, each of which has a trajectory length of more than 200 meters (up to 1,300 meters) and covers an area of more than 200 square meters (up to 30,000 square meters), including more than 100k LiDAR frames, 300k video frames, and 500K IMU-based motion frames. With SLOPER4D, we provide a detailed and thorough analysis of two critical tasks, including camera-based 3D HPE and LiDAR-based 3D HPE in urban environments, and benchmark a new task, …

Poster
Linzhi Huang · Yulong Li · Hongbo Tian · Yue Yang · Xiangang Li · Weihong Deng · Jieping Ye

[ West Building Exhibit Halls ABC ]

In this paper, we delve into semi-supervised 2D human pose estimation. The previous method ignored two problems: (i) When conducting interactive training between large model and lightweight model, the pseudo label of lightweight model will be used to guide large models. (ii) The negative impact of noise pseudo labels on training. Moreover, the labels used for 2D human pose estimation are relatively complex: keypoint category and keypoint position. To solve the problems mentioned above, we propose a semi-supervised 2D human pose estimation framework driven by a position inconsistency pseudo label correction module (SSPCM). We introduce an additional auxiliary teacher and use the pseudo labels generated by the two teacher model in different periods to calculate the inconsistency score and remove outliers. Then, the two teacher models are updated through interactive training, and the student model is updated using the pseudo labels generated by two teachers. To further improve the performance of the student model, we use the semi-supervised Cut-Occlude based on pseudo keypoint perception to generate more hard and effective samples. In addition, we also proposed a new indoor overhead fisheye human keypoint dataset WEPDTOF-Pose. Extensive experiments demonstrate that our method outperforms the previous best semi-supervised 2D human pose estimation …

Poster
Sohyun Lee · Jaesung Rim · Boseung Jeong · Geonu Kim · Byungju Woo · Haechan Lee · Sunghyun Cho · Suha Kwak

[ West Building Exhibit Halls ABC ]

We study human pose estimation in extremely low-light images. This task is challenging due to the difficulty of collecting real low-light images with accurate labels, and severely corrupted inputs that degrade prediction quality significantly. To address the first issue, we develop a dedicated camera system and build a new dataset of real low-light images with accurate pose labels. Thanks to our camera system, each low-light image in our dataset is coupled with an aligned well-lit image, which enables accurate pose labeling and is used as privileged information during training. We also propose a new model and a new training strategy that fully exploit the privileged information to learn representation insensitive to lighting conditions. Our method demonstrates outstanding performance on real extremely low-light images, and extensive analyses validate that both of our model and dataset contribute to the success.

Poster
Riqiang Gao · Bin Lou · Zhoubing Xu · Dorin Comaniciu · Ali Kamen

[ West Building Exhibit Halls ABC ]

Deep learning has been utilized in knowledge-based radiotherapy planning in which a system trained with a set of clinically approved plans is employed to infer a three-dimensional dose map for a given new patient. However, previous deep methods are primarily limited to simple scenarios, e.g., a fixed planning type or a consistent beam angle configuration. This in fact limits the usability of such approaches and makes them not generalizable over a larger set of clinical scenarios. Herein, we propose a novel conditional generative model, Flexible-C^m GAN, utilizing additional information regarding planning types and various beam geometries. A miss-consistency loss is proposed to deal with the challenge of having a limited set of conditions on the input data, e.g., incomplete training samples. To address the challenges of including clinical preferences, we derive a differentiable shift-dose-volume loss to incorporate the well-known dose-volume histogram constraints. During inference, users can flexibly choose a specific planning type and a set of beam angles to meet the clinical requirements. We conduct experiments on an illustrative face dataset to show the motivation of Flexible-C^m GAN and further validate our model’s potential clinical values with two radiotherapy datasets. The results demonstrate the superior performance of the proposed method …

Poster
Antyanta Bangunharcana · Ahmed Magd · Kyung-Soo Kim

[ West Building Exhibit Halls ABC ]

Self-supervised multi-frame depth estimation achieves high accuracy by computing matching costs of pixel correspondences between adjacent frames, injecting geometric information into the network. These pixel-correspondence candidates are computed based on the relative pose estimates between the frames. Accurate pose predictions are essential for precise matching cost computation as they influence the epipolar geometry. Furthermore, improved depth estimates can, in turn, be used to align pose estimates. Inspired by traditional structure-from-motion (SfM) principles, we propose the DualRefine model, which tightly couples depth and pose estimation through a feedback loop. Our novel update pipeline uses a deep equilibrium model framework to iteratively refine depth estimates and a hidden state of feature maps by computing local matching costs based on epipolar geometry. Importantly, we used the refined depth estimates and feature maps to compute pose updates at each step. This update in the pose estimates slowly alters the epipolar geometry during the refinement process. Experimental results on the KITTI dataset demonstrate competitive depth prediction and odometry prediction performance surpassing published self-supervised baselines. The code is available at https://github.com/antabangun/DualRefine.

Poster
Yijia He · Bo Xu · Zhanpeng Ouyang · Hongdong Li

[ West Building Exhibit Halls ABC ]

We propose a novel visual-inertial odometry (VIO) initialization method, which decouples rotation and translation estimation, and achieves higher efficiency and better robustness. Existing loosely-coupled VIO-initialization methods suffer from poor stability of visual structure-from-motion (SfM), whereas those tightly-coupled methods often ignore the gyroscope bias in the closed-form solution, resulting in limited accuracy. Moreover, the aforementioned two classes of methods are computationally expensive, because 3D point clouds need to be reconstructed simultaneously. In contrast, our new method fully combines inertial and visual measurements for both rotational and translational initialization. First, a rotation-only solution is designed for gyroscope bias estimation, which tightly couples the gyroscope and camera observations. Second, the initial velocity and gravity vector are solved with linear translation constraints in a globally optimal fashion and without reconstructing 3D point clouds. Extensive experiments have demonstrated that our method is 8~72 times faster (w.r.t. a 10-frame set) than the state-of-the-art methods, and also presents significantly higher robustness and accuracy. The source code is available at https://github.com/boxuLibrary/drt-vio-init.

Poster
Linus Härenstam-Nielsen · Niclas Zeller · Daniel Cremers

[ West Building Exhibit Halls ABC ]

We propose an approach based on convex relaxations for certifiably optimal robust multiview triangulation. To this end, we extend existing relaxation approaches to non-robust multiview triangulation by incorporating a least squares cost function. We propose two formulations, one based on epipolar constraints and one based on fractional reprojection constraints. The first is lower dimensional and remains tight under moderate noise and outlier levels, while the second is higher dimensional and therefore slower but remains tight even under extreme noise and outlier levels. We demonstrate through extensive experiments that the proposed approaches allow us to compute provably optimal reconstructions even under significant noise and a large percentage of outliers.

Poster
Zheheng Jiang · Hossein Rahmani · Sue Black · Bryan M. Williams

[ West Building Exhibit Halls ABC ]

Recently, deep learning based approaches have shown promising results in 3D hand reconstruction from a single RGB image. These approaches can be roughly divided into model-based approaches, which are heavily dependent on the model’s parameter space, and model-free approaches, which require large numbers of 3D ground truths to reduce depth ambiguity and struggle in weakly-supervised scenarios. To overcome these issues, we propose a novel probabilistic model to achieve the robustness of model-based approaches and reduced dependence on the model’s parameter space of model-free approaches. The proposed probabilistic model incorporates a model-based network as a prior-net to estimate the prior probability distribution of joints and vertices. An Attention-based Mesh Vertices Uncertainty Regression (AMVUR) model is proposed to capture dependencies among vertices and the correlation between joints and mesh vertices to improve their feature representation. We further propose a learning based occlusion-aware Hand Texture Regression model to achieve high-fidelity texture reconstruction. We demonstrate the flexibility of the proposed probabilistic model to be trained in both supervised and weakly-supervised scenarios. The experimental results demonstrate our probabilistic model’s state-of-the-art accuracy in 3D hand and texture reconstruction from a single image in both training schemes, including in the presence of severe occlusions.

Poster
Timo Bolkart · Tianye Li · Michael J. Black

[ West Building Exhibit Halls ABC ]

Existing methods for capturing datasets of 3D heads in dense semantic correspondence are slow and commonly address the problem in two separate steps; multi-view stereo (MVS) reconstruction followed by non-rigid registration. To simplify this process, we introduce TEMPEH (Towards Estimation of 3D Meshes from Performances of Expressive Heads) to directly infer 3D heads in dense correspondence from calibrated multi-view images. Registering datasets of 3D scans typically requires manual parameter tuning to find the right balance between accurately fitting the scans’ surfaces and being robust to scanning noise and outliers. Instead, we propose to jointly register a 3D head dataset while training TEMPEH. Specifically, during training, we minimize a geometric loss commonly used for surface registration, effectively leveraging TEMPEH as a regularizer. Our multi-view head inference builds on a volumetric feature representation that samples and fuses features from each view using camera calibration information. To account for partial occlusions and a large capture volume that enables head movements, we use view- and surface-aware feature fusion, and a spatial transformer-based head localization module, respectively. We use raw MVS scans as supervision during training, but, once trained, TEMPEH directly predicts 3D heads in dense correspondence without requiring scans. Predicting one head takes about …

Poster
HyunJun Jung · Patrick Ruhkamp · Guangyao Zhai · Nikolas Brasch · Yitong Li · Yannick Verdie · Jifei Song · Yiren Zhou · Anil Armagan · Slobodan Ilic · Aleš Leonardis · Nassir Navab · Benjamin Busam

[ West Building Exhibit Halls ABC ]

Learning-based methods to solve dense 3D vision problems typically train on 3D sensor data. The respectively used principle of measuring distances provides advantages and drawbacks. These are typically not compared nor discussed in the literature due to a lack of multi-modal datasets. Texture-less regions are problematic for structure from motion and stereo, reflective material poses issues for active sensing, and distances for translucent objects are intricate to measure with existing hardware. Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities. These effects remain unnoticed if the sensor measurement is considered as ground truth during the evaluation. This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction. We rigorously show the significant impact of sensor characteristics on the learned predictions and notice generalisation issues arising from various technologies in everyday household environments. For evaluation, we introduce a carefully designed dataset comprising measurements from commodity sensors, namely D-ToF, I-ToF, passive/active stereo, and monocular RGB+P. Our study quantifies the considerable sensor noise impact and paves the way to improved dense vision estimates and targeted data fusion.

Poster
Yinyu Nie · Angela Dai · Xiaoguang Han · Matthias Nießner

[ West Building Exhibit Halls ABC ]

Holistic 3D scene understanding entails estimation of both layout configuration and object geometry in a 3D environment. Recent works have shown advances in 3D scene estimation from various input modalities (e.g., images, 3D scans), by leveraging 3D supervision (e.g., 3D bounding boxes or CAD models), for which collection at scale is expensive and often intractable. To address this shortcoming, we propose a new method to learn 3D scene priors of layout and shape without requiring any 3D ground truth. Instead, we rely on 2D supervision from multi-view RGB images. Our method represents a 3D scene as a latent vector, from which we can progressively decode to a sequence of objects characterized by their class categories, 3D bounding boxes, and meshes. With our trained autoregressive decoder representing the scene prior, our method facilitates many downstream applications, including scene synthesis, interpolation, and single-view reconstruction. Experiments on 3D-FRONT and ScanNet show that our method outperforms state of the art in single-view reconstruction, and achieves state-of-the-art results in scene synthesis against baselines which require for 3D supervision.

Poster
Tong Wu · Jiarui Zhang · Xiao Fu · Yuxin Wang · Jiawei Ren · Liang Pan · Wayne Wu · Lei Yang · Jiaqi Wang · Chen Qian · Dahua Lin · Ziwei Liu

[ West Building Exhibit Halls ABC ]

Recent advances in modeling 3D objects mostly rely on synthetic datasets due to the lack of large-scale real-scanned 3D databases. To facilitate the development of 3D perception, reconstruction, and generation in the real world, we propose OmniObject3D, a large vocabulary 3D object dataset with massive high-quality real-scanned 3D objects. OmniObject3D has several appealing properties: 1) Large Vocabulary: It comprises 6,000 scanned objects in 190 daily categories, sharing common classes with popular 2D datasets (e.g., ImageNet and LVIS), benefiting the pursuit of generalizable 3D representations. 2) Rich Annotations: Each 3D object is captured with both 2D and 3D sensors, providing textured meshes, point clouds, multiview rendered images, and multiple real-captured videos. 3) Realistic Scans: The professional scanners support high-quality object scans with precise shapes and realistic appearances. With the vast exploration space offered by OmniObject3D, we carefully set up four evaluation tracks: a) robust 3D perception, b) novel-view synthesis, c) neural surface reconstruction, and d) 3D object generation. Extensive studies are performed on these four benchmarks, revealing new observations, challenges, and opportunities for future research in realistic 3D vision.

Poster
Songyou Peng · Kyle Genova · Chiyu “Max” Jiang · Andrea Tagliasacchi · Marc Pollefeys · Thomas Funkhouser

[ West Building Exhibit Halls ABC ]

Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a model for a single task with supervision. We propose OpenScene, an alternative approach where a model predicts dense features for 3D scene points that are co-embedded with text and image pixels in CLIP feature space. This zero-shot approach enables task-agnostic training and open-vocabulary queries. For example, to perform SOTA zero-shot 3D semantic segmentation it first infers CLIP features for every 3D point and later classifies them based on similarities to embeddings of arbitrary class labels. More interestingly, it enables a suite of open-vocabulary scene understanding applications that have never been done before. For example, it allows a user to enter an arbitrary text query and then see a heat map indicating which parts of a scene match. Our approach is effective at identifying objects, materials, affordances, activities, and room types in complex 3D scenes, all using a single model trained without any labeled 3D data.

Poster
Xu Cao · Hiroaki Santo · Fumio Okura · Yasuyuki Matsushita

[ West Building Exhibit Halls ABC ]

We present a method for 3D reconstruction only using calibrated multi-view surface azimuth maps. Our method, multi-view azimuth stereo, is effective for textureless or specular surfaces, which are difficult for conventional multi-view stereo methods. We introduce the concept of tangent space consistency: Multi-view azimuth observations of a surface point should be lifted to the same tangent space. Leveraging this consistency, we recover the shape by optimizing a neural implicit surface representation. Our method harnesses the robust azimuth estimation capabilities of photometric stereo methods or polarization imaging while bypassing potentially complex zenith angle estimation. Experiments using azimuth maps from various sources validate the accurate shape recovery with our method, even without zenith angles.

Poster
Yi-Ting Shen · Hyungtae Lee · Heesung Kwon · Shuvra S. Bhattacharyya

[ West Building Exhibit Halls ABC ]

To effectively interrogate UAV-based images for detecting objects of interest, such as humans, it is essential to acquire large-scale UAV-based datasets that include human instances with various poses captured from widely varying viewing angles. As a viable alternative to laborious and costly data curation, we introduce Progressive Transformation Learning (PTL), which gradually augments a training dataset by adding transformed virtual images with enhanced realism. Generally, a virtual2real transformation generator in the conditional GAN framework suffers from quality degradation when a large domain gap exists between real and virtual images. To deal with the domain gap, PTL takes a novel approach that progressively iterates the following three steps: 1) select a subset from a pool of virtual images according to the domain gap, 2) transform the selected virtual images to enhance realism, and 3) add the transformed virtual images to the training set while removing them from the pool. In PTL, accurately quantifying the domain gap is critical. To do that, we theoretically demonstrate that the feature representation space of a given object detector can be modeled as a multivariate Gaussian distribution from which the Mahalanobis distance between a virtual object and the Gaussian distribution of each object category in the …

Poster
Yuanwen Yue · Theodora Kontogianni · Konrad Schindler · Francis Engelmann

[ West Building Exhibit Halls ABC ]

We address 2D floorplan reconstruction from 3D scans. Existing approaches typically employ heuristically designed multi-stage pipelines. Instead, we formulate floorplan reconstruction as a single-stage structured prediction task: find a variable-size set of polygons, which in turn are variable-length sequences of ordered vertices. To solve it we develop a novel Transformer architecture that generates polygons of multiple rooms in parallel, in a holistic manner without hand-crafted intermediate stages. The model features two-level queries for polygons and corners, and includes polygon matching to make the network end-to-end trainable. Our method achieves a new state-of-the-art for two challenging datasets, Structured3D and SceneCAD, along with significantly faster inference than previous methods. Moreover, it can readily be extended to predict additional information, i.e., semantic room types and architectural elements like doors and windows. Our code and models are available at: https://github.com/ywyue/RoomFormer.

Poster
Fabio Tosi · Alessio Tonioni · Daniele De Gregorio · Matteo Poggi

[ West Building Exhibit Halls ABC ]

We introduce a novel framework for training deep stereo networks effortlessly and without any ground-truth. By leveraging state-of-the-art neural rendering solutions, we generate stereo training data from image sequences collected with a single handheld camera. On top of them, a NeRF-supervised training procedure is carried out, from which we exploit rendered stereo triplets to compensate for occlusions and depth maps as proxy labels. This results in stereo networks capable of predicting sharp and detailed disparity maps. Experimental results show that models trained under this regime yield a 30-40% improvement over existing self-supervised methods on the challenging Middlebury dataset, filling the gap to supervised models and, most times, outperforming them at zero-shot generalization.

Poster
Fengyun Wang · Dong Zhang · Hanwang Zhang · Jinhui Tang · Qianru Sun

[ West Building Exhibit Halls ABC ]

Semantic Scene Completion (SSC) transforms an image of single-view depth and/or RGB 2D pixels into 3D voxels, each of whose semantic labels are predicted. SSC is a well-known ill-posed problem as the prediction model has to “imagine” what is behind the visible surface, which is usually represented by Truncated Signed Distance Function (TSDF). Due to the sensory imperfection of the depth camera, most existing methods based on the noisy TSDF estimated from depth values suffer from 1) incomplete volumetric predictions and 2) confused semantic labels. To this end, we use the ground-truth 3D voxels to generate a perfect visible surface, called TSDF-CAD, and then train a “cleaner” SSC model. As the model is noise-free, it is expected to focus more on the “imagination” of unseen voxels. Then, we propose to distill the intermediate “cleaner” knowledge into another model with noisy TSDF input. In particular, we use the 3D occupancy feature and the semantic relations of the “cleaner self” to supervise the counterparts of the “noisy self” to respectively address the above two incorrect predictions. Experimental results validate that the proposed method improves the noisy counterparts with 3.1% IoU and 2.2% mIoU for measuring scene completion and SSC, and also achieves …

Poster
Haozheng Yu · Lu He · Bing Jian · Weiwei Feng · Shan Liu

[ West Building Exhibit Halls ABC ]

Indoor 360 panoramas have two essential properties. (1) The panoramas are continuous and seamless in the horizontal direction. (2) Gravity plays an important role in indoor environment design. By leveraging these properties, we present PanelNet, a framework that understands indoor environments using a novel panel representation of 360 images. We represent an equirectangular projection (ERP) as consecutive vertical panels with corresponding 3D panel geometry. To reduce the negative impact of panoramic distortion, we incorporate a panel geometry embedding network that encodes both the local and global geometric features of a panel. To capture the geometric context in room design, we introduce Local2Global Transformer, which aggregates local information within a panel and panel-wise global context. It greatly improves the model performance with low training overhead. Our method outperforms existing methods on indoor 360 depth estimation and shows competitive results against state-of-the-art approaches on the task of indoor layout estimation and semantic segmentation.

Poster
Avinash Paliwal · Andrii Tsarov · Nima Khademi Kalantari

[ West Building Exhibit Halls ABC ]

In this paper, we propose an approach for view-time interpolation of stereo videos. Specifically, we build upon X-Fields that approximates an interpolatable mapping between the input coordinates and 2D RGB images using a convolutional decoder. Our main contribution is to analyze and identify the sources of the problems with using X-Fields in our application and propose novel techniques to overcome these challenges. Specifically, we observe that X-Fields struggles to implicitly interpolate the disparities for large baseline cameras. Therefore, we propose multi-plane disparities to reduce the spatial distance of the objects in the stereo views. Moreover, we propose non-uniform time coordinates to handle the non-linear and sudden motion spikes in videos. We additionally introduce several simple, but important, improvements over X-Fields. We demonstrate that our approach is able to produce better results than the state of the art, while running in near real-time rates and having low memory and storage costs.

Poster
Wenjie Chang · Yueyi Zhang · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Depth estimation from indoor panoramas is challenging due to the equirectangular distortions of panoramas and inaccurate matching. In this paper, we propose a practical framework to improve the accuracy and efficiency of depth estimation from multi-view indoor panoramic images with the Neural Radiance Field technology. Specifically, we develop two networks to implicitly learn the Signed Distance Function for depth measurements and the radiance field from panoramas. We also introduce a novel spherical position embedding scheme to achieve high accuracy. For better convergence, we propose an initialization method for the network weights based on the Manhattan World Assumption. Furthermore, we devise a geometric consistency loss, leveraging the surface normal, to further refine the depth estimation. The experimental results demonstrate that our proposed method outperforms state-of-the-art works by a large margin in both quantitative and qualitative evaluations. Our source code is available at https://github.com/WJ-Chang-42/IndoorPanoDepth.

Poster
Zehan Zheng · Danni Wu · Ruisi Lu · Fan Lu · Guang Chen · Changjun Jiang

[ West Building Exhibit Halls ABC ]

In recent years, there has been a significant increase in focus on the interpolation task of computer vision. Despite the tremendous advancement of video interpolation, point cloud interpolation remains insufficiently explored. Meanwhile, the existence of numerous nonlinear large motions in real-world scenarios makes the point cloud interpolation task more challenging. In light of these issues, we present NeuralPCI: an end-to-end 4D spatio-temporal Neural field for 3D Point Cloud Interpolation, which implicitly integrates multi-frame information to handle nonlinear large motions for both indoor and outdoor scenarios. Furthermore, we construct a new multi-frame point cloud interpolation dataset called NL-Drive for large nonlinear motions in autonomous driving scenes to better demonstrate the superiority of our method. Ultimately, NeuralPCI achieves state-of-the-art performance on both DHB (Dynamic Human Bodies) and NL-Drive datasets. Beyond the interpolation task, our method can be naturally extended to point cloud extrapolation, morphing, and auto-labeling, which indicates substantial potential in other domains. Codes are available at https://github.com/ispc-lab/NeuralPCI.

Poster
Changjiang Cai · Pan Ji · Qingan Yan · Yi Xu

[ West Building Exhibit Halls ABC ]

This paper presents a learning-based method for multi-view depth estimation from posed images. Our core idea is a “learning-to-optimize” paradigm that iteratively indexes a plane-sweeping cost volume and regresses the depth map via a convolutional Gated Recurrent Unit (GRU). Since the cost volume plays a paramount role in encoding the multi-view geometry, we aim to improve its construction both at pixel- and frame- levels. At the pixel level, we propose to break the symmetry of the Siamese network (which is typically used in MVS to extract image features) by introducing a transformer block to the reference image (but not to the source images). Such an asymmetric volume allows the network to extract global features from the reference image to predict its depth map. Given potential inaccuracies in the poses between reference and source images, we propose to incorporate a residual pose network to correct the relative poses. This essentially rectifies the cost volume at the frame level. We conduct extensive experiments on real-world MVS datasets and show that our method achieves state-of-the-art performance in terms of both within-dataset evaluation and cross-dataset generalization.

Poster
Shitao Tang · Sicong Tang · Andrea Tagliasacchi · Ping Tan · Yasutaka Furukawa

[ West Building Exhibit Halls ABC ]

This paper presents an end-to-end neural mapping method for camera localization, dubbed NeuMap, encoding a whole scene into a grid of latent codes, with which a Transformer-based auto-decoder regresses 3D coordinates of query pixels. State-of-the-art feature matching methods require each scene to be stored as a 3D point cloud with per-point features, consuming several gigabytes of storage per scene. While compression is possible, performance drops significantly at high compression rates. Conversely, coordinate regression methods achieve high compression by storing scene information in a neural network but suffer from reduced robustness. NeuMap combines the advantages of both approaches by utilizing 1) learnable latent codes for efficient scene representation and 2) a scene-agnostic Transformer-based auto-decoder to infer coordinates for query pixels. This scene-agnostic network design learns robust matching priors from large-scale data and enables rapid optimization of codes for new scenes while keeping the network weights fixed. Extensive evaluations on five benchmarks show that NeuMap significantly outperforms other coordinate regression methods and achieves comparable performance to feature matching methods while requiring a much smaller scene representation size. For example, NeuMap achieves 39.1% accuracy in the Aachen night benchmark with only 6MB of data, whereas alternative methods require 100MB or several gigabytes and …

Poster
Antoine Guédon · Tom Monnier · Pascal Monasse · Vincent Lepetit

[ West Building Exhibit Halls ABC ]

We introduce a method that simultaneously learns to explore new large environments and to reconstruct them in 3D from color images only. This is closely related to the Next Best View problem (NBV), where one has to identify where to move the camera next to improve the coverage of an unknown scene. However, most of the current NBV methods rely on depth sensors, need 3D supervision and/or do not scale to large scenes. Our method requires only a color camera and no 3D supervision. It simultaneously learns in a self-supervised fashion to predict a volume occupancy field from color images and, from this field, to predict the NBV. Thanks to this approach, our method performs well on new scenes as it is not biased towards any training 3D data. We demonstrate this on a recent dataset made of various 3D scenes and show it performs even better than recent methods requiring a depth sensor, which is not a realistic assumption for outdoor scenes captured with a flying drone.

Poster
Xin Kong · Shikun Liu · Marwan Taher · Andrew J. Davison

[ West Building Exhibit Halls ABC ]

We present vMAP, an object-level dense SLAM system using neural field representations. Each object is represented by a small MLP, enabling efficient, watertight object modelling without the need for 3D priors. As an RGB-D camera browses a scene with no prior information, vMAP detects object instances on-the-fly, and dynamically adds them to its map. Specifically, thanks to the power of vectorised training, vMAP can optimise as many as 50 individual objects in a single scene, with an extremely efficient training speed of 5Hz map update. We experimentally demonstrate significantly improved scene-level and object-level reconstruction quality compared to prior neural field SLAM systems. Project page: https://kxhit.github.io/vMAP.

Poster
Yunzhi Zhang · Shangzhe Wu · Noah Snavely · Jiajun Wu

[ West Building Exhibit Halls ABC ]

What is a rose, visually? A rose comprises its intrinsics, including the distribution of geometry, texture, and material specific to its object category. With knowledge of these intrinsic properties, we may render roses of different sizes and shapes, in different poses, and under different lighting conditions. In this work, we build a generative model that learns to capture such object intrinsics from a single image, such as a photo of a bouquet. Such an image includes multiple instances of an object type. These instances all share the same intrinsics, but appear different due to a combination of variance within these intrinsics and differences in extrinsic factors, such as pose and illumination. Experiments show that our model successfully learns object intrinsics (distribution of geometry, texture, and material) for a wide range of objects, each from a single Internet image. Our method achieves superior results on multiple downstream tasks, including intrinsic image decomposition, shape and image generation, view synthesis, and relighting.

Poster
Yihao Wang · Zhigang Wang · Bin Zhao · Dong Wang · Mulin Chen · Xuelong Li

[ West Building Exhibit Halls ABC ]

Non-line-of-sight (NLOS) tracking has drawn increasing attention in recent years, due to its ability to detect object motion out of sight. Most previous works on NLOS tracking rely on active illumination, e.g., laser, and suffer from high cost and elaborate experimental conditions. Besides, these techniques are still far from practical application due to oversimplified settings. In contrast, we propose a purely passive method to track a person walking in an invisible room by only observing a relay wall, which is more in line with real application scenarios, e.g., security. To excavate imperceptible changes in videos of the relay wall, we introduce difference frames as an essential carrier of temporal-local motion messages. In addition, we propose PAC-Net, which consists of alternating propagation and calibration, making it capable of leveraging both dynamic and static messages on a frame-level granularity. To evaluate the proposed method, we build and publish the first dynamic passive NLOS tracking dataset, NLOS-Track, which fills the vacuum of realistic NLOS datasets. NLOS-Track contains thousands of NLOS video clips and corresponding trajectories. Both real-shot and synthetic data are included. Our codes and dataset are available at https://againstentropy.github.io/NLOS-Track/.

Poster
Praneeth Chakravarthula · Jim Aldon D’Souza · Ethan Tseng · Joe Bartusek · Felix Heide

[ West Building Exhibit Halls ABC ]

Existing autonomous vehicles primarily use sensors that rely on electromagnetic waves which are undisturbed in good environmental conditions but can suffer in adverse scenarios, such as low light or for objects with low reflectance. Moreover, only objects in direct line-of-sight are typically detected by these existing methods. Acoustic pressure waves emanating from road users do not share these limitations. However, such signals are typically ignored in automotive perception because they suffer from low spatial resolution and lack directional information. In this work, we introduce long-range acoustic beamforming of pressure waves from noise directly produced by automotive vehicles in-the-wild as a {complementary sensing modality} to traditional optical sensor approaches for detection of objects in dynamic traffic environments. To this end, we introduce the first multimodal long-range acoustic beamforming dataset. We propose a neural aperture expansion method for beamforming and we validate its utility for multimodal automotive object detection. We validate the benefit of adding sound detections to existing RGB cameras in challenging automotive scenarios, where camera-only approaches fail or do not deliver the ultra-fast rates of pressure sensors.

Poster
Jia Zeng · Li Chen · Hanming Deng · Lewei Lu · Junchi Yan · Yu Qiao · Hongyang Li

[ West Building Exhibit Halls ABC ]

Multi-camera 3D object detection blossoms in recent years and most of state-of-the-art methods are built up on the bird’s-eye-view (BEV) representations. Albeit remarkable performance, these works suffer from low efficiency. Typically, knowledge distillation can be used for model compression. However, due to unclear 3D geometry reasoning, expert features usually contain some noisy and confusing areas. In this work, we investigate on how to distill the knowledge from an imperfect expert. We propose FD3D, a Focal Distiller for 3D object detection. Specifically, a set of queries are leveraged to locate the instance-level areas for masked feature generation, to intensify feature representation ability in these areas. Moreover, these queries search out the representative fine-grained positions for refined distillation. We verify the effectiveness of our method by applying it to two popular detection models, BEVFormer and DETR3D. The results demonstrate that our method achieves improvements of 4.07 and 3.17 points respectively in terms of NDS metric on nuScenes benchmark. Code is hosted at https://github.com/OpenPerceptionX/BEVPerception-Survey-Recipe.

Poster
Ruihao Wang · Jian Qin · Kaiying Li · Yaochen Li · Dong Cao · Jintao Xu

[ West Building Exhibit Halls ABC ]

3D lane detection which plays a crucial role in vehicle routing, has recently been a rapidly developing topic in autonomous driving. Previous works struggle with practicality due to their complicated spatial transformations and inflexible representations of 3D lanes. Faced with the issues, our work proposes an efficient and robust monocular 3D lane detection called BEV-LaneDet with three main contributions. First, we introduce the Virtual Camera that unifies the in/extrinsic parameters of cameras mounted on different vehicles to guarantee the consistency of the spatial relationship among cameras. It can effectively promote the learning procedure due to the unified visual space. We secondly propose a simple but efficient 3D lane representation called Key-Points Representation. This module is more suitable to represent the complicated and diverse 3D lane structures. At last, we present a light-weight and chip-friendly spatial transformation module named Spatial Transformation Pyramid to transform multiscale front-view features into BEV features. Experimental results demonstrate that our work outperforms the state-of-the-art approaches in terms of F-Score, being 10.6% higher on the OpenLane dataset and 4.0% higher on the Apollo 3D synthetic dataset, with a speed of 185 FPS. Code is released at https://github.com/gigo-team/bevlanedet.

Poster
Zechuan Li · Hongshan Yu · Zhengeng Yang · Tongjia Chen · Naveed Akhtar

[ West Building Exhibit Halls ABC ]

3D object detection techniques commonly follow a pipeline that aggregates predicted object central point features to compute candidate points. However, these candidate points contain only positional information, largely ignoring the object-level shape information. This eventually leads to sub-optimal 3D object detection. In this work, we propose AShapeFormer, a semantics-guided object-level shape encoding module for 3D object detection. This is a plug-n-play module that leverages multi-head attention to encode object shape information. We also propose shape tokens and object-scene positional encoding to ensure that the shape information is fully exploited. Moreover, we introduce a semantic guidance sub-module to sample more foreground points and suppress the influence of background points for a better object shape perception. We demonstrate a straightforward enhancement of multiple existing methods with our AShapeFormer. Through extensive experiments on the popular SUN RGB-D and ScanNetV2 dataset, we show that our enhanced models are able to outperform the baselines by a considerable absolute margin of up to 8.1%. Code will be available at https://github.com/ZechuanLi/AShapeFormer

Poster
Yinpeng Dong · Caixin Kang · Jinlai Zhang · Zijian Zhu · Yikai Wang · Xiao Yang · Hang Su · Xingxing Wei · Jun Zhu

[ West Building Exhibit Halls ABC ]

3D object detection is an important task in autonomous driving to perceive the surroundings. Despite the excellent performance, the existing 3D detectors lack the robustness to real-world corruptions caused by adverse weathers, sensor noises, etc., provoking concerns about the safety and reliability of autonomous driving systems. To comprehensively and rigorously benchmark the corruption robustness of 3D detectors, in this paper we design 27 types of common corruptions for both LiDAR and camera inputs considering real-world driving scenarios. By synthesizing these corruptions on public datasets, we establish three corruption robustness benchmarks---KITTI-C, nuScenes-C, and Waymo-C. Then, we conduct large-scale experiments on 24 diverse 3D object detection models to evaluate their corruption robustness. Based on the evaluation results, we draw several important findings, including: 1) motion-level corruptions are the most threatening ones that lead to significant performance drop of all models; 2) LiDAR-camera fusion models demonstrate better robustness; 3) camera-only models are extremely vulnerable to image corruptions, showing the indispensability of LiDAR point clouds. We release the benchmarks and codes at https://github.com/thu-ml/3DCorruptionsAD to be helpful for future studies.

Poster
Hang Xu · Xinyuan Liu · Qiang Zhao · Yike Ma · Chenggang Yan · Feng Dai

[ West Building Exhibit Halls ABC ]

Spherical image object detection emerges in many applications from virtual reality to robotics and automatic driving, while many existing detectors use ln-norms loss for regression of spherical bounding boxes. There are two intrinsic flaws for ln-norms loss, i.e., independent optimization of parameters and inconsistency between metric (dominated by IoU) and loss. These problems are common in planar image detection but more significant in spherical image detection. Solution for these problems has been extensively discussed in planar image detection by using IoU loss and related variants. However, these solutions cannot be migrated to spherical image object detection due to the undifferentiable of the Spherical IoU (SphIoU). In this paper, we design a simple but effective regression loss based on Gaussian Label Distribution Learning (GLDL) for spherical image object detection. Besides, we observe that the scale of the object in a spherical image varies greatly. The huge differences among objects from different categories make the sample selection strategy based on SphIoU challenging. Therefore, we propose GLDL-ATSS as a better training sample selection strategy for objects of the spherical image, which can alleviate the drawback of IoU threshold-based strategy of scale-sample imbalance. Extensive results on various two datasets with different baseline detectors show …

Poster
Ukcheol Shin · Jinsun Park · In So Kweon

[ West Building Exhibit Halls ABC ]

Robust and accurate geometric understanding against adverse weather conditions is one top prioritized conditions to achieve a high-level autonomy of self-driving cars. However, autonomous driving algorithms relying on the visible spectrum band are easily impacted by weather and lighting conditions. A long-wave infrared camera, also known as a thermal imaging camera, is a potential rescue to achieve high-level robustness. However, the missing necessities are the well-established large-scale dataset and public benchmark results. To this end, in this paper, we first built a large-scale Multi-Spectral Stereo (MS^2) dataset, including stereo RGB, stereo NIR, stereo thermal, and stereo LiDAR data along with GNSS/IMU information. The collected dataset provides about 195K synchronized data pairs taken from city, residential, road, campus, and suburban areas in the morning, daytime, and nighttime under clear-sky, cloudy, and rainy conditions. Secondly, we conduct an exhaustive validation process of monocular and stereo depth estimation algorithms designed on visible spectrum bands to benchmark their performance in the thermal image domain. Lastly, we propose a unified depth network that effectively bridges monocular depth and stereo depth tasks from a conditional random field approach perspective. Our dataset and source code are available at https://github.com/UkcheolShin/MS2-MultiSpectralStereoDataset.

Poster
Chuanfu Shen · Chao Fan · Wei Wu · Rui Wang · George Q. Huang · Shiqi Yu

[ West Building Exhibit Halls ABC ]

Video-based gait recognition has achieved impressive results in constrained scenarios. However, visual cameras neglect human 3D structure information, which limits the feasibility of gait recognition in the 3D wild world. Instead of extracting gait features from images, this work explores precise 3D gait features from point clouds and proposes a simple yet efficient 3D gait recognition framework, termed LidarGait. Our proposed approach projects sparse point clouds into depth maps to learn the representations with 3D geometry information, which outperforms existing point-wise and camera-based methods by a significant margin. Due to the lack of point cloud datasets, we build the first large-scale LiDAR-based gait recognition dataset, SUSTech1K, collected by a LiDAR sensor and an RGB camera. The dataset contains 25,239 sequences from 1,050 subjects and covers many variations, including visibility, views, occlusions, clothing, carrying, and scenes. Extensive experiments show that (1) 3D structure information serves as a significant feature for gait recognition. (2) LidarGait outperforms existing point-based and silhouette-based methods by a significant margin, while it also offers stable cross-view results. (3) The LiDAR sensor is superior to the RGB camera for gait recognition in the outdoor environment. The source code and dataset have been made available at https://lidargait.github.io.

Poster
Kunyu Wang · Xueyang Fu · Yukun Huang · Chengzhi Cao · Gege Shi · Zheng-Jun Zha

[ West Building Exhibit Halls ABC ]

When deploying the Unmanned Aerial Vehicles object detection (UAV-OD) network to complex and unseen real-world scenarios, the generalization ability is usually reduced due to the domain shift. To address this issue, this paper proposes a novel frequency domain disentanglement method to improve the UAV-OD generalization. Specifically, we first verified that the spectrum of different bands in the image has different effects to the UAV-OD generalization. Based on this conclusion, we design two learnable filters to extract domain-invariant spectrum and domain-specific spectrum, respectively. The former can be used to train the UAV-OD network and improve its capacity for generalization. In addition, we design a new instance-level contrastive loss to guide the network training. This loss enables the network to concentrate on extracting domain-invariant spectrum and domain-specific spectrum, so as to achieve better disentangling results. Experimental results on three unseen target domains demonstrate that our method has better generalization ability than both the baseline method and state-of-the-art methods.

Poster
Yuwen Xiong · Wei-Chiu Ma · Jingkang Wang · Raquel Urtasun

[ West Building Exhibit Halls ABC ]

LiDAR provides accurate geometric measurements of the 3D world. Unfortunately, dense LiDARs are very expensive and the point clouds captured by low-beam LiDAR are often sparse. To address these issues, we present UltraLiDAR, a data-driven framework for scene-level LiDAR completion, LiDAR generation, and LiDAR manipulation. The crux of UltraLiDAR is a compact, discrete representation that encodes the point cloud’s geometric structure, is robust to noise, and is easy to manipulate. We show that by aligning the representation of a sparse point cloud to that of a dense point cloud, we can densify the sparse point clouds as if they were captured by a real high-density LiDAR, drastically reducing the cost. Furthermore, by learning a prior over the discrete codebook, we can generate diverse, realistic LiDAR point clouds for self-driving. We evaluate the effectiveness of UltraLiDAR on sparse-to-dense LiDAR completion and LiDAR generation. Experiments show that densifying real-world point clouds with our approach can significantly improve the performance of downstream perception systems. Compared to prior art on LiDAR generation, our approach generates much more realistic point clouds. According to A/B test, over 98.5% of the time human participants prefer our results over those of previous methods. Please refer to project page …

Poster
Tian-Xing Xu · Yuan-Chen Guo · Yu-Kun Lai · Song-Hai Zhang

[ West Building Exhibit Halls ABC ]

3D single object tracking plays an essential role in many applications, such as autonomous driving. It remains a challenging problem due to the large appearance variation and the sparsity of points caused by occlusion and limited sensor capabilities. Therefore, contextual information across two consecutive frames is crucial for effective object tracking. However, points containing such useful information are often overlooked and cropped out in existing methods, leading to insufficient use of important contextual knowledge. To address this issue, we propose CXTrack, a novel transformer-based network for 3D object tracking, which exploits ConteXtual information to improve the tracking results. Specifically, we design a target-centric transformer network that directly takes point features from two consecutive frames and the previous bounding box as input to explore contextual information and implicitly propagate target cues. To achieve accurate localization for objects of all sizes, we propose a transformer-based localization head with a novel center embedding module to distinguish the target from distractors. Extensive experiments on three large-scale datasets, KITTI, nuScenes and Waymo Open Dataset, show that CXTrack achieves state-of-the-art tracking performance while running at 34 FPS.

Poster
Wei Ji · Jingjing Li · Cheng Bian · Zongwei Zhou · Jiaying Zhao · Alan L. Yuille · Li Cheng

[ West Building Exhibit Halls ABC ]

Robust and reliable semantic segmentation in complex scenes is crucial for many real-life applications such as autonomous safe driving and nighttime rescue. In most approaches, it is typical to make use of RGB images as input. They however work well only in preferred weather conditions; when facing adverse conditions such as rainy, overexposure, or low-light, they often fail to deliver satisfactory results. This has led to the recent investigation into multispectral semantic segmentation, where RGB and thermal infrared (RGBT) images are both utilized as input. This gives rise to significantly more robust segmentation of image objects in complex scenes and under adverse conditions. Nevertheless, the present focus in single RGBT image input restricts existing methods from well addressing dynamic real-world scenes. Motivated by the above observations, in this paper, we set out to address a relatively new task of semantic segmentation of multispectral video input, which we refer to as Multispectral Video Semantic Segmentation, or MVSS in short. An in-house MVSeg dataset is thus curated, consisting of 738 calibrated RGB and thermal videos, accompanied by 3,545 fine-grained pixel-level semantic annotations of 26 categories. Our dataset contains a wide range of challenging urban scenes in both daytime and nighttime. Moreover, we …

Poster
Tao Lu · Xiang Ding · Haisong Liu · Gangshan Wu · Limin Wang

[ West Building Exhibit Halls ABC ]

Extending the success of 2D Large Kernel to 3D perception is challenging due to: 1. the cubically-increasing overhead in processing 3D data; 2. the optimization difficulties from data scarcity and sparsity. Previous work has taken the first step to scale up the kernel size from 3x3x3 to 7x7x7 by introducing block-shared weights. However, to reduce the feature variations within a block, it only employs modest block size and fails to achieve larger kernels like the 21x21x21. To address this issue, we propose a new method, called LinK, to achieve a wider-range perception receptive field in a convolution-like manner with two core designs. The first is to replace the static kernel matrix with a linear kernel generator, which adaptively provides weights only for non-empty voxels. The second is to reuse the pre-computed aggregation results in the overlapped blocks to reduce computation complexity. The proposed method successfully enables each voxel to perceive context within a range of 21x21x21. Extensive experiments on two basic perception tasks, 3D object detection and 3D semantic segmentation, demonstrate the effectiveness of our method. Notably, we rank 1st on the public leaderboard of the 3D detection benchmark of nuScenes (LiDAR track), by simply incorporating a LinK-based backbone into …

Poster
Tarasha Khurana · Peiyun Hu · David Held · Deva Ramanan

[ West Building Exhibit Halls ABC ]

Predicting how the world can evolve in the future is crucial for motion planning in autonomous systems. Classical methods are limited because they rely on costly human annotations in the form of semantic class labels, bounding boxes, and tracks or HD maps of cities to plan their motion -- and thus are difficult to scale to large unlabeled datasets. One promising self-supervised task is 3D point cloud forecasting from unannotated LiDAR sequences. We show that this task requires algorithms to implicitly capture (1) sensor extrinsics (i.e., the egomotion of the autonomous vehicle), (2) sensor intrinsics (i.e., the sampling pattern specific to the particular LiDAR sensor), and (3) the shape and motion of other objects in the scene. But autonomous systems should make predictions about the world and not their sensors! To this end, we factor out (1) and (2) by recasting the task as one of spacetime (4D) occupancy forecasting. But because it is expensive to obtain ground-truth 4D occupancy, we “render” point cloud data from 4D occupancy predictions given sensor extrinsics and intrinsics, allowing one to train and test occupancy algorithms with unannotated LiDAR sequences. This also allows one to evaluate and compare point cloud forecasting algorithms across diverse …

Poster
Ziyue Zhu · Qiang Meng · Xiao Wang · Ke Wang · Liujiang Yan · Jian Yang

[ West Building Exhibit Halls ABC ]

This paper explores the potential of curriculum learning in LiDAR-based 3D object detection by proposing a curricular object manipulation (COM) framework. The framework embeds the curricular training strategy into both the loss design and the augmentation process. For the loss design, we propose the COMLoss to dynamically predict object-level difficulties and emphasize objects of different difficulties based on training stages. On top of the widely-used augmentation technique called GT-Aug in LiDAR detection tasks, we propose a novel COMAug strategy which first clusters objects in ground-truth database based on well-designed heuristics. Group-level difficulties rather than individual ones are then predicted and updated during training for stable results. Model performance and generalization capabilities can be improved by sampling and augmenting progressively more difficult objects into the training points. Extensive experiments and ablation studies reveal the superior and generality of the proposed framework. The code is available at https://github.com/ZZY816/COM.

Poster
Jiaming Zhang · Ruiping Liu · Hao Shi · Kailun Yang · Simon Reiß · Kunyu Peng · Haodong Fu · Kaiwei Wang · Rainer Stiefelhagen

[ West Building Exhibit Halls ABC ]

Multimodal fusion can make semantic segmentation more robust. However, fusing an arbitrary number of modalities remains underexplored. To delve into this problem, we create the DeLiVER arbitrary-modal segmentation benchmark, covering Depth, LiDAR, multiple Views, Events, and RGB. Aside from this, we provide this dataset in four severe weather conditions as well as five sensor failure cases to exploit modal complementarity and resolve partial outages. To facilitate this data, we present the arbitrary cross-modal segmentation model CMNeXt. It encompasses a Self-Query Hub (SQ-Hub) designed to extract effective information from any modality for subsequent fusion with the RGB representation and adds only negligible amounts of parameters (~0.01M) per additional modality. On top, to efficiently and flexibly harvest discriminative cues from the auxiliary modalities, we introduce the simple Parallel Pooling Mixer (PPX). With extensive experiments on a total of six benchmarks, our CMNeXt achieves state-of-the-art performance, allowing to scale from 1 to 81 modalities on the DeLiVER, KITTI-360, MFNet, NYU Depth V2, UrbanLF, and MCubeS datasets. On the freshly collected DeLiVER, the quad-modal CMNeXt reaches up to 66.30% in mIoU with a +9.10% gain as compared to the mono-modal baseline.

Poster
Haobo Jiang · Zheng Dang · Zhen Wei · Jin Xie · Jian Yang · Mathieu Salzmann

[ West Building Exhibit Halls ABC ]

Learning-based outlier (mismatched correspondence) rejection for robust 3D registration generally formulates the outlier removal as an inlier/outlier classification problem. The core for this to be successful is to learn the discriminative inlier/outlier feature representations. In this paper, we develop a novel variational non-local network-based outlier rejection framework for robust alignment. By reformulating the non-local feature learning with variational Bayesian inference, the Bayesian-driven long-range dependencies can be modeled to aggregate discriminative geometric context information for inlier/outlier distinction. Specifically, to achieve such Bayesian-driven contextual dependencies, each query/key/value component in our non-local network predicts a prior feature distribution and a posterior one. Embedded with the inlier/outlier label, the posterior feature distribution is label-dependent and discriminative. Thus, pushing the prior to be close to the discriminative posterior in the training step enables the features sampled from this prior at test time to model high-quality long-range dependencies. Notably, to achieve effective posterior feature guidance, a specific probabilistic graphical model is designed over our non-local model, which lets us derive a variational low bound as our optimization objective for model training. Finally, we propose a voting-based inlier searching strategy to cluster the high-quality hypothetical inliers for transformation estimation. Extensive experiments on 3DMatch, 3DLoMatch, and KITTI datasets …

Poster
Zhenzhen Weng · Alexander S. Gorban · Jingwei Ji · Mahyar Najibi · Yin Zhou · Dragomir Anguelov

[ West Building Exhibit Halls ABC ]

Training a 3D human keypoint detector from point clouds in a supervised manner requires large volumes of high quality labels. While it is relatively easy to capture large amounts of human point clouds, annotating 3D keypoints is expensive, subjective, error prone and especially difficult for long-tail cases (pedestrians with rare poses, scooterists, etc.). In this work, we propose GC-KPL - Geometry Consistency inspired Key Point Leaning, an approach for learning 3D human joint locations from point clouds without human labels. We achieve this by our novel unsupervised loss formulations that account for the structure and movement of the human body. We show that by training on a large training set from Waymo Open Dataset without any human annotated keypoints, we are able to achieve reasonable performance as compared to the fully supervised approach. Further, the backbone benefits from the unsupervised training and is useful in downstream fewshot learning of keypoints, where fine-tuning on only 10 percent of the labeled training data gives comparable performance to fine-tuning on the entire set. We demonstrated that GC-KPL outperforms by a large margin over SoTA when trained on entire dataset and efficiently leverages large volumes of unlabeled data.

Poster
Li Jiang · Zetong Yang · Shaoshuai Shi · Vladislav Golyanik · Dengxin Dai · Bernt Schiele

[ West Building Exhibit Halls ABC ]

Masked signal modeling has greatly advanced self-supervised pre-training for language and 2D images. However, it is still not fully explored in 3D scene understanding. Thus, this paper introduces Masked Shape Prediction (MSP), a new framework to conduct masked signal modeling in 3D scenes. MSP uses the essential 3D semantic cue, i.e., geometric shape, as the prediction target for masked points. The context-enhanced shape target consisting of explicit shape context and implicit deep shape feature is proposed to facilitate exploiting contextual cues in shape prediction. Meanwhile, the pre-training architecture in MSP is carefully designed to alleviate the masked shape leakage from point coordinates. Experiments on multiple 3D understanding tasks on both indoor and outdoor datasets demonstrate the effectiveness of MSP in learning good feature representations to consistently boost downstream performance.

Poster
Le Xue · Mingfei Gao · Chen Xing · Roberto Martín-Martín · Jiajun Wu · Caiming Xiong · Ran Xu · Juan Carlos Niebles · Silvio Savarese

[ West Building Exhibit Halls ABC ]

The recognition capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of images, language, and 3D point clouds by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification …

Poster
Yuheng Lu · Chenfeng Xu · Xiaobao Wei · Xiaodong Xie · Masayoshi Tomizuka · Kurt Keutzer · Shanghang Zhang

[ West Building Exhibit Halls ABC ]

The goal of open-vocabulary detection is to identify novel objects based on arbitrary textual descriptions. In this paper, we address open-vocabulary 3D point-cloud detection by a dividing-and-conquering strategy, which involves: 1) developing a point-cloud detector that can learn a general representation for localizing various objects, and 2) connecting textual and point-cloud representations to enable the detector to classify novel object categories based on text prompting. Specifically, we resort to rich image pre-trained models, by which the point-cloud detector learns localizing objects under the supervision of predicted 2D bounding boxes from 2D pre-trained detectors. Moreover, we propose a novel de-biased triplet cross-modal contrastive learning to connect the modalities of image, point-cloud and text, thereby enabling the point-cloud detector to benefit from vision-language pre-trained models, i.e., CLIP. The novel use of image and vision-language pre-trained models for point-cloud detectors allows for open-vocabulary 3D object detection without the need for 3D annotations. Experiments demonstrate that the proposed method improves at least 3.03 points and 7.47 points over a wide range of baselines on the ScanNet and SUN RGB-D datasets, respectively. Furthermore, we provide a comprehensive analysis to explain why our approach works.

Poster
Zhijian Liu · Xinyu Yang · Haotian Tang · Shang Yang · Song Han

[ West Building Exhibit Halls ABC ]

Transformer, as an alternative to CNN, has been proven effective in many modalities (e.g., texts and images). For 3D point cloud transformers, existing efforts focus primarily on pushing their accuracy to the state-of-the-art level. However, their latency lags behind sparse convolution-based models (3x slower), hindering their usage in resource-constrained, latency-sensitive applications (such as autonomous driving). This inefficiency comes from point clouds’ sparse and irregular nature, whereas transformers are designed for dense, regular workloads. This paper presents FlatFormer to close this latency gap by trading spatial proximity for better computational regularity. We first flatten the point cloud with window-based sorting and partition points into groups of equal sizes rather than windows of equal shapes. This effectively avoids expensive structuring and padding overheads. We then apply self-attention within groups to extract local features, alternate sorting axis to gather features from different directions, and shift windows to exchange features across groups. FlatFormer delivers state-of-the-art accuracy on Waymo Open Dataset with 4.6x speedup over (transformer-based) SST and 1.4x speedup over (sparse convolutional) CenterPoint. This is the first point cloud transformer that achieves real-time performance on edge GPUs and is faster than sparse convolutional methods while achieving on-par or even superior accuracy on large-scale benchmarks.

Poster
Zhiqiang Shen · Xiaoxiao Sheng · Longguang Wang · Yulan Guo · Qiong Liu · Xi Zhou

[ West Building Exhibit Halls ABC ]

Self-supervised learning can extract representations of good quality from solely unlabeled data, which is appealing for point cloud videos due to their high labelling cost. In this paper, we propose a contrastive mask prediction (PointCMP) framework for self-supervised learning on point cloud videos. Specifically, our PointCMP employs a two-branch structure to achieve simultaneous learning of both local and global spatio-temporal information. On top of this two-branch structure, a mutual similarity based augmentation module is developed to synthesize hard samples at the feature level. By masking dominant tokens and erasing principal channels, we generate hard samples to facilitate learning representations with better discrimination and generalization performance. Extensive experiments show that our PointCMP achieves the state-of-the-art performance on benchmark datasets and outperforms existing full-supervised counterparts. Transfer learning results demonstrate the superiority of the learned representations across different datasets and tasks.

Poster
Minghan Zhu · Maani Ghaffari · William A. Clark · Huei Peng

[ West Building Exhibit Halls ABC ]

This paper proposes a convolution structure for learning SE(3)-equivariant features from 3D point clouds. It can be viewed as an equivariant version of kernel point convolutions (KPConv), a widely used convolution form to process point cloud data. Compared with existing equivariant networks, our design is simple, lightweight, fast, and easy to be integrated with existing task-specific point cloud learning pipelines. We achieve these desirable properties by combining group convolutions and quotient representations. Specifically, we discretize SO(3) to finite groups for their simplicity while using SO(2) as the stabilizer subgroup to form spherical quotient feature fields to save computations. We also propose a permutation layer to recover SO(3) features from spherical features to preserve the capacity to distinguish rotations. Experiments show that our method achieves comparable or superior performance in various tasks, including object classification, pose estimation, and keypoint-matching, while consuming much less memory and running faster than existing work. The proposed method can foster the development of equivariant models for real-world applications based on point clouds.

Poster
Tao Xie · Shiguang Wang · Ke Wang · Linqi Yang · Zhiqiang Jiang · Xingcheng Zhang · Kun Dai · Ruifeng Li · Jian Cheng

[ West Building Exhibit Halls ABC ]

In this work, we show that it is feasible to perform multiple tasks concurrently on point cloud with a straightforward yet effective multi-task network. Our framework, Poly-PC, tackles the inherent obstacles (e.g., different model architectures caused by task bias and conflicting gradients caused by multiple dataset domains, etc.) of multi-task learning on point cloud. Specifically, we propose a residual set abstraction (Res-SA) layer for efficient and effective scaling in both width and depth of the network, hence accommodating the needs of various tasks. We develop a weight-entanglement-based one-shot NAS technique to find optimal architectures for all tasks. Moreover, such technique entangles the weights of multiple tasks in each layer to offer task-shared parameters for efficient storage deployment while providing ancillary task-specific parameters for learning task-related features. Finally, to facilitate the training of Poly-PC, we introduce a task-prioritization-based gradient balance algorithm that leverages task prioritization to reconcile conflicting gradients, ensuring high performance for all tasks. Benefiting from the suggested techniques, models optimized by Poly-PC collectively for all tasks keep fewer total FLOPs and parameters and outperform previous methods. We also demonstrate that Poly-PC allows incremental learning and evades catastrophic forgetting when tuned to a new task.

Poster
Nan Zhang · Zhiyi Pan · Thomas H. Li · Wei Gao · Ge Li

[ West Building Exhibit Halls ABC ]

Recently, self-attention networks achieve impressive performance in point cloud segmentation due to their superiority in modeling long-range dependencies. However, compared to self-attention mechanism, we find graph convolutions show a stronger ability in capturing local geometry information with less computational cost. In this paper, we employ a hybrid architecture design to construct our Graph Convolution Network with Attentive Filtering (AF-GCN), which takes advantage of both graph convolution and self-attention mechanism. We adopt graph convolutions to aggregate local features in the shallow encoder stages, while in the deeper stages, we propose a self-attention-like module named Graph Attentive Filter (GAF) to better model long-range contexts from distant neighbors. Besides, to further improve graph representation for point cloud segmentation, we employ a Spatial Feature Projection (SFP) module for graph convolutions which helps to handle spatial variations of unstructured point clouds. Finally, a graph-shared down-sampling and up-sampling strategy is introduced to make full use of the graph structures in point cloud processing. We conduct extensive experiments on multiple datasets including S3DIS, ScanNetV2, Toronto-3D, and ShapeNetPart. Experimental results show our AF-GCN obtains competitive performance.

Poster
Sheng Ao · Qingyong Hu · Hanyun Wang · Kai Xu · Yulan Guo

[ West Building Exhibit Halls ABC ]

An ideal point cloud registration framework should have superior accuracy, acceptable efficiency, and strong generalizability. However, this is highly challenging since existing registration techniques are either not accurate enough, far from efficient, or generalized poorly. It remains an open question that how to achieve a satisfying balance between this three key elements. In this paper, we propose BUFFER, a point cloud registration method for balancing accuracy, efficiency, and generalizability. The key to our approach is to take advantage of both point-wise and patch-wise techniques, while overcoming the inherent drawbacks simultaneously. Different from a simple combination of existing methods, each component of our network has been carefully crafted to tackle specific issues. Specifically, a Point-wise Learner is first introduced to enhance computational efficiency by predicting keypoints and improving the representation capacity of features by estimating point orientations, a Patch-wise Embedder which leverages a lightweight local feature learner is then deployed to extract efficient and general patch features. Additionally, an Inliers Generator which combines simple neural layers and general features is presented to search inlier correspondences. Extensive experiments on real-world scenarios demonstrate that our method achieves the best of both worlds in accuracy, efficiency, and generalization. In particular, our method not only …

Poster
Bingnan Yang · Mi Zhang · Zhan Zhang · Zhili Zhang · Xiangyun Hu

[ West Building Exhibit Halls ABC ]

Rapid development in automatic vector extraction from remote sensing images has been witnessed in recent years. However, the vast majority of existing works concentrate on a specific target, fragile to category variety, and hardly achieve stable performance crossing different categories. In this work, we propose an innovative class-agnostic model, namely TopDiG, to directly extract topological directional graphs from remote sensing images and solve these issues. Firstly, TopDiG employs a topology-concentrated node detector (TCND) to detect nodes and obtain compact perception of topological components. Secondly, we propose a dynamic graph supervision (DGS) strategy to dynamically generate adjacency graph labels from unordered nodes. Finally, the directional graph (DiG) generator module is designed to construct topological directional graphs from predicted nodes. Experiments on the Inria, CrowdAI, GID, GF2 and Massachusetts datasets empirically demonstrate that TopDiG is class-agnostic and achieves competitive performance on all datasets.

Poster
Daniel Widdowson · Vitaliy Kurlin

[ West Building Exhibit Halls ABC ]

Rigid structures such as cars or any other solid objects are often represented by finite clouds of unlabeled points. The most natural equivalence on these point clouds is rigid motion or isometry maintaining all inter-point distances. Rigid patterns of point clouds can be reliably compared only by complete isometry invariants that can also be called equivariant descriptors without false negatives (isometric clouds having different descriptions) and without false positives (non-isometric clouds with the same description). Noise and motion in data motivate a search for invariants that are continuous under perturbations of points in a suitable metric. We propose the first continuous and complete invariant of unlabeled clouds in any Euclidean space. For a fixed dimension, the new metric for this invariant is computable in a polynomial time in the number of points.

Poster
Xu Zheng · Jinjing Zhu · Yexin Liu · Zidong Cao · Chong Fu · Lin Wang

[ West Building Exhibit Halls ABC ]

The ability of scene understanding has sparked active research for panoramic image semantic segmentation. However, the performance is hampered by distortion of the equirectangular projection (ERP) and a lack of pixel-wise annotations. For this reason, some works treat the ERP and pinhole images equally and transfer knowledge from the pinhole to ERP images via unsupervised domain adaptation (UDA). However, they fail to handle the domain gaps caused by: 1) the inherent differences between camera sensors and captured scenes; 2) the distinct image formats (e.g., ERP and pinhole images). In this paper, we propose a novel yet flexible dual-path UDA framework, DPPASS, taking ERP and tangent projection (TP) images as inputs. To reduce the domain gaps, we propose cross-projection and intra-projection training. The cross-projection training includes tangent-wise feature contrastive training and prediction consistency training. That is, the former formulates the features with the same projection locations as positive examples and vice versa, for the models’ awareness of distortion, while the latter ensures the consistency of cross-model predictions between the ERP and TP. Moreover, adversarial intra-projection training is proposed to reduce the inherent gap, between the features of the pinhole images and those of the ERP and TP images, respectively. Importantly, the …

Poster
Harshil Bhatia · Edith Tretschk · Zorah Lähner · Marcel Seelbach Benkner · Michael Moeller · Christian Theobalt · Vladislav Golyanik

[ West Building Exhibit Halls ABC ]

Jointly matching multiple, non-rigidly deformed 3D shapes is a challenging, NP-hard problem. A perfect matching is necessarily cycle-consistent: Following the pairwise point correspondences along several shapes must end up at the starting vertex of the original shape. Unfortunately, existing quantum shape-matching methods do not support multiple shapes and even less cycle consistency. This paper addresses the open challenges and introduces the first quantum-hybrid approach for 3D shape multi-matching; in addition, it is also cycle-consistent. Its iterative formulation is admissible to modern adiabatic quantum hardware and scales linearly with the total number of input shapes. Both these characteristics are achieved by reducing the N-shape case to a sequence of three-shape matchings, the derivation of which is our main technical contribution. Thanks to quantum annealing, high-quality solutions with low energy are retrieved for the intermediate NP-hard objectives. On benchmark datasets, the proposed approach significantly outperforms extensions to multi-shape matching of a previous quantum-hybrid two-shape matching method and is on-par with classical multi-matching methods. Our source code is available at 4dqv.mpi-inf.mpg.de/CCuantuMM/

Poster
Guilherme Potje · Felipe Cadar · André Araujo · Renato Martins · Erickson R. Nascimento

[ West Building Exhibit Halls ABC ]

Local feature extraction is a standard approach in computer vision for tackling important tasks such as image matching and retrieval. The core assumption of most methods is that images undergo affine transformations, disregarding more complicated effects such as non-rigid deformations. Furthermore, incipient works tailored for non-rigid correspondence still rely on keypoint detectors designed for rigid transformations, hindering performance due to the limitations of the detector. We propose DALF (Deformation-Aware Local Features), a novel deformation-aware network for jointly detecting and describing keypoints, to handle the challenging problem of matching deformable surfaces. All network components work cooperatively through a feature fusion approach that enforces the descriptors’ distinctiveness and invariance. Experiments using real deforming objects showcase the superiority of our method, where it delivers 8% improvement in matching scores compared to the previous best results. Our approach also enhances the performance of two real-world applications: deformable object retrieval and non-rigid 3D surface registration. Code for training, inference, and applications are publicly available at verlab.dcc.ufmg.br/descriptors/dalf_cvpr23.

Poster
Souhaib Attaiki · Maks Ovsjanikov

[ West Building Exhibit Halls ABC ]

Deep functional maps have recently emerged as a successful paradigm for non-rigid 3D shape correspondence tasks. An essential step in this pipeline consists in learning feature functions that are used as constraints to solve for a functional map inside the network. However, the precise nature of the information learned and stored in these functions is not yet well understood. Specifically, a major question is whether these features can be used for any other objective, apart from their purely algebraic role, in solving for functional map matrices. In this paper, we show that under some mild conditions, the features learned within deep functional map approaches can be used as point-wise descriptors and thus are directly comparable across different shapes, even without the necessity of solving for a functional map at test time. Furthermore, informed by our analysis, we propose effective modifications to the standard deep functional map pipeline, which promotes structural properties of learned features, significantly improving the matching results. Finally, we demonstrate that previously unsuccessful attempts at using extrinsic architectures for deep functional map feature extraction can be remedied via simple architectural changes, which promote the theoretical properties suggested by our analysis. We thus bridge the gap between intrinsic and …

Poster
Haoliang Zhao · Huizhou Zhou · Yongjun Zhang · Jie Chen · Yitong Yang · Yong Zhao

[ West Building Exhibit Halls ABC ]

In the field of binocular stereo matching, remarkable progress has been made by iterative methods like RAFT-Stereo and CREStereo. However, most of these methods lose information during the iterative process, making it difficult to generate more detailed difference maps that take full advantage of high-frequency information. We propose the Decouple module to alleviate the problem of data coupling and allow features containing subtle details to transfer across the iterations which proves to alleviate the problem significantly in the ablations. To further capture high-frequency details, we propose a Normalization Refinement module that unifies the disparities as a proportion of the disparities over the width of the image, which address the problem of module failure in cross-domain scenarios. Further, with the above improvements, the ResNet-like feature extractor that has not been changed for years becomes a bottleneck. Towards this end, we proposed a multi-scale and multi-stage feature extractor that introduces the channel-wise self-attention mechanism which greatly addresses this bottleneck. Our method (DLNR) ranks 1st on the Middlebury leaderboard, significantly outperforming the next best method by 13.04%. Our method also achieves SOTA performance on the KITTI-2015 benchmark for D1-fg.

Poster
Qiaole Dong · Chenjie Cao · Yanwei Fu

[ West Building Exhibit Halls ABC ]

Optical flow estimation is a challenging problem remaining unsolved. Recent deep learning based optical flow models have achieved considerable success. However, these models often train networks from the scratch on standard optical flow data, which restricts their ability to robustly and geometrically match image features. In this paper, we propose a rethinking to previous optical flow estimation. We particularly leverage Geometric Image Matching (GIM) as a pre-training task for the optical flow estimation (MatchFlow) with better feature representations, as GIM shares some common challenges as optical flow estimation, and with massive labeled real-world data. Thus, matching static scenes helps to learn more fundamental feature correlations of objects and scenes with consistent displacements. Specifically, the proposed MatchFlow model employs a QuadTree attention-based network pre-trained on MegaDepth to extract coarse features for further flow regression. Extensive experiments show that our model has great cross-dataset generalization. Our method achieves 11.5% and 10.1% error reduction from GMA on Sintel clean pass and KITTI test set. At the time of anonymous submission, our MatchFlow(G) enjoys state-of-theart performance on Sintel clean and final pass compared to published approaches with comparable computation and memory footprint. Codes and models will be released in https://github.com/DQiaole/MatchFlow.

Poster
Shun Fang · Zhengqin Xu · Shiqian Wu · Shoulie Xie

[ West Building Exhibit Halls ABC ]

Robust principal component analysis (RPCA) is widely studied in computer vision. Recently an adaptive rank estimate based RPCA has achieved top performance in low-level vision tasks without the prior rank, but both the rank estimate and RPCA optimization algorithm involve singular value decomposition, which requires extremely huge computational resource for large-scale matrices. To address these issues, an efficient RPCA (eRPCA) algorithm is proposed based on block Krylov iteration and CUR decomposition in this paper. Specifically, the Krylov iteration method is employed to approximate the eigenvalue decomposition in the rank estimation, which requires O(ndrq + n(rq)^2) for an (n×d) input matrix, in which q is a parameter with a small value, r is the target rank. Based on the estimated rank, CUR decomposition is adopted to replace SVD in updating low-rank matrix component, whose complexity reduces from O(rnd) to O(r^2n) per iteration. Experimental results verify the efficiency and effectiveness of the proposed eRPCA over the state-of-the-art methods in various low-level vision applications.

Poster
Bingchen Yang · Haiyong Jiang · Hao Pan · Jun Xiao

[ West Building Exhibit Halls ABC ]

Vector graphics (VG) are ubiquitous in industrial designs. In this paper, we address semantic segmentation of a typical VG, i.e., roughcast floorplans with bare wall structures, whose output can be directly used for further applications like interior furnishing and room space modeling. Previous semantic segmentation works mostly process well-decorated floorplans in raster images and usually yield aliased boundaries and outlier fragments in segmented rooms, due to pixel-level segmentation that ignores the regular elements (e.g. line segments) in vector floorplans. To overcome these issues, we propose to fully utilize the regular elements in vector floorplans for more integral segmentation. Our pipeline predicts room segmentation from vector floorplans by dually classifying line segments as room boundaries, and regions partitioned by line segments as room segments. To fully exploit the structural relationships between lines and regions, we use two-stream graph neural networks to process the line segments and partitioned regions respectively, and devise a novel modulated graph attention layer to fuse the heterogeneous information from one stream to the other. Extensive experiments show that by directly operating on vector floorplans, we outperform image-based methods in both mIoU and mAcc. In addition, we propose a new metric that captures room integrity and boundary regularity, …

Poster
Shaoheng Fang · Zi Wang · Yiqi Zhong · Junhao Ge · Siheng Chen

[ West Building Exhibit Halls ABC ]

Vision-centric joint perception and prediction (PnP) has become an emerging trend in autonomous driving research. It predicts the future states of the traffic participants in the surrounding environment from raw RGB images. However, it is still a critical challenge to synchronize features obtained at multiple camera views and timestamps due to inevitable geometric distortions and further exploit those spatial-temporal features. To address this issue, we propose a temporal bird’s-eye-view pyramid transformer (TBP-Former) for vision-centric PnP, which includes two novel designs. First, a pose-synchronized BEV encoder is proposed to map raw image inputs with any camera pose at any time to a shared and synchronized BEV space for better spatial-temporal synchronization. Second, a spatial-temporal pyramid transformer is introduced to comprehensively extract multi-scale BEV features and predict future BEV states with the support of spatial priors. Extensive experiments on nuScenes dataset show that our proposed framework overall outperforms all state-of-the-art vision-based prediction methods.

Poster
Ben Agro · Quinlan Sykora · Sergio Casas · Raquel Urtasun

[ West Building Exhibit Halls ABC ]

A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants. Existing works either perform object detection followed by trajectory forecasting of the detected objects, or predict dense occupancy and flow grids for the whole scene. The former poses a safety concern as the number of detections needs to be kept low for efficiency reasons, sacrificing object recall. The latter is computationally expensive due to the high-dimensionality of the output grid, and suffers from the limited receptive field inherent to fully convolutional networks. Furthermore, both approaches employ many computational resources predicting areas or objects that might never be queried by the motion planner. This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network. Our method avoids unnecessary computation, as it can be directly queried by the motion planner at continuous spatio-temporal locations. Moreover, we design an architecture that overcomes the limited receptive field of previous explicit occupancy prediction methods by adding an efficient yet effective global attention mechanism. Through extensive experiments in both urban and highway settings, we demonstrate that our implicit model outperforms the current state-of-the-art. For …

Poster
Ze Yang · Yun Chen · Jingkang Wang · Sivabalan Manivasagam · Wei-Chiu Ma · Anqi Joyce Yang · Raquel Urtasun

[ West Building Exhibit Halls ABC ]

Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV) a reality. It requires one to generate safety critical scenarios beyond what can be collected safely in the world, as many scenarios happen rarely on our roads. To accurately evaluate performance, we need to test the SDV on these scenarios in closed-loop, where the SDV and other actors interact with each other at each timestep. Previously recorded driving logs provide a rich resource to build these new scenarios from, but for closed loop evaluation, we need to modify the sensor data based on the new scene configuration and the SDV’s decisions, as actors might be added or removed and the trajectories of existing actors and the SDV will differ from the original log. In this paper, we present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle and converts it into a realistic closed-loop multi-sensor simulation. UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene, and composites them together to simulate LiDAR and camera data at new viewpoints, with actors added or removed and at new placements. To better handle extrapolated views, we …

Poster
Yuning Wang · Pu Zhang · Lei Bai · Jianru Xue

[ West Building Exhibit Halls ABC ]

Predicting the future trajectories of the traffic agents is a gordian technique in autonomous driving. However, trajectory prediction suffers from data imbalance in the prevalent datasets, and the tailed data is often more complicated and safety-critical. In this paper, we focus on dealing with the long-tail phenomenon in trajectory prediction. Previous methods dealing with long-tail data did not take into account the variety of motion patterns in the tailed data. In this paper, we put forward a future enhanced contrastive learning framework to recognize tail trajectory patterns and form a feature space with separate pattern clusters.Furthermore, a distribution aware hyper predictor is brought up to better utilize the shaped feature space.Our method is a model-agnostic framework and can be plugged into many well-known baselines. Experimental results show that our framework outperforms the state-of-the-art long-tail prediction method on tailed samples by 9.5% on ADE and 8.5% on FDE, while maintaining or slightly improving the averaged performance. Our method also surpasses many long-tail techniques on trajectory prediction task.

Poster
Chenxin Xu · Robby T. Tan · Yuhong Tan · Siheng Chen · Yu Guang Wang · Xinchao Wang · Yanfeng Wang

[ West Building Exhibit Halls ABC ]

Learning to predict agent motions with relationship reasoning is important for many applications. In motion prediction tasks, maintaining motion equivariance under Euclidean geometric transformations and invariance of agent interaction is a critical and fundamental principle. However, such equivariance and invariance properties are overlooked by most existing methods. To fill this gap, we propose EqMotion, an efficient equivariant motion prediction model with invariant interaction reasoning. To achieve motion equivariance, we propose an equivariant geometric feature learning module to learn a Euclidean transformable feature through dedicated designs of equivariant operations. To reason agent’s interactions, we propose an invariant interaction reasoning module to achieve a more stable interaction modeling. To further promote more comprehensive motion features, we propose an invariant pattern feature learning module to learn an invariant pattern feature, which cooperates with the equivariant geometric feature to enhance network expressiveness. We conduct experiments for the proposed model on four distinct scenarios: particle dynamics, molecule dynamics, human skeleton motion prediction and pedestrian trajectory prediction. Experimental results show that our method is not only generally applicable, but also achieves state-of-the-art prediction performances on all the four tasks, improving by 24.0/30.1/8.6/9.2%. Code is available at https://github.com/MediaBrain-SJTU/EqMotion.

Poster
Guoqiang Zhang · Kenta Niwa · W. Bastiaan Kleijn

[ West Building Exhibit Halls ABC ]

We propose lookahead diffusion probabilistic models (LA-DPMs) to exploit the correlation in the outputs of the deep neural networks (DNNs) over subsequent timesteps in diffusion probabilistic models (DPMs) to refine the mean estimation of the conditional Gaussian distributions in the backward process. A typical DPM first obtains an estimate of the original data sample x by feeding the most recent state zi and index i into the DNN model and then computes the mean vector of the conditional Gaussian distribution for z{i-1}. We propose to calculate a more accurate estimate for x by performing extrapolation on the two estimates of x that are obtained by feeding (z{i+1}, i+1) and (zi, i) into the DNN model. The extrapolation can be easily integrated into the backward process of existing DPMs by introducing an additional connection over two consecutive timesteps, and fine-tuning is not required. Extensive experiments showed that plugging in the additional connection into DDPM, DDIM, DEIS, S-PNDM, and high-order DPM-Solvers leads to a significant performance gain in terms of Fréchet inception distance (FID) score. Our implementation is available at https://github.com/guoqiangzhang-x/LA-DPM.

Poster
Ruihan Yang · Ge Yang · Xiaolong Wang

[ West Building Exhibit Halls ABC ]

Legged robots have the potential to expand the reach of autonomy beyond paved roads. In this work, we consider the difficult problem of locomotion on challenging terrains using a single forward-facing depth camera. Due to the partial observability of the problem, the robot has to rely on past observations to infer the terrain currently beneath it. To solve this problem, we follow the paradigm in computer vision that explicitly models the 3D geometry of the scene and propose Neural Volumetric Memory (NVM), a geometric memory architecture that explicitly accounts for the SE(3) equivariance of the 3D world. NVM aggregates feature volumes from multiple camera views by first bringing them back to the ego-centric frame of the robot. We test the learned visual-locomotion policy on a physical robot and show that our approach, learning legged locomotion with neural volumetric memory, produces performance gains over prior works on challenging terrains. We include ablation studies and show that the representations stored in the neural volumetric memory capture sufficient geometric information to reconstruct the scene. Our project page with videos is https://rchalyang.github.io/NVM/

Poster
Sounak Mondal · Zhibo Yang · Seoyoung Ahn · Dimitris Samaras · Gregory Zelinsky · Minh Hoai

[ West Building Exhibit Halls ABC ]

Predicting human gaze is important in Human-Computer Interaction (HCI). However, to practically serve HCI applications, gaze prediction models must be scalable, fast, and accurate in their spatial and temporal gaze predictions. Recent scanpath prediction models focus on goal-directed attention (search). Such models are limited in their application due to a common approach relying on trained target detectors for all possible objects, and the availability of human gaze data for their training (both not scalable). In response, we pose a new task called ZeroGaze, a new variant of zero-shot learning where gaze is predicted for never-before-searched objects, and we develop a novel model, Gazeformer, to solve the ZeroGaze problem. In contrast to existing methods using object detector modules, Gazeformer encodes the target using a natural language model, thus leveraging semantic similarities in scanpath prediction. We use a transformer-based encoder-decoder architecture because transformers are particularly useful for generating contextual representations. Gazeformer surpasses other models by a large margin (19% - 70%) on the ZeroGaze setting. It also outperforms existing target-detection models on standard gaze prediction for both target-present and target-absent search tasks. In addition to its improved performance, Gazeformer is more than five times faster than the state-of-the-art target-present visual search model.

Poster
Luca De Luigi · Ren Li · Benoît Guillard · Mathieu Salzmann · Pascal Fua

[ West Building Exhibit Halls ABC ]

Recent approaches to drape garments quickly over arbitrary human bodies leverage self-supervision to eliminate the need for large training sets. However, they are designed to train one network per clothing item, which severely limits their generalization abilities. In our work, we rely on self-supervision to train a single network to drape multiple garments. This is achieved by predicting a 3D deformation field conditioned on the latent codes of a generative network, which models garments as unsigned distance fields. Our pipeline can generate and drape previously unseen garments of any topology, whose shape can be edited by manipulating their latent codes. Being fully differentiable, our formulation makes it possible to recover accurate 3D models of garments from partial observations -- images or 3D scans -- via gradient descent. Our code is publicly available at https://github.com/liren2515/DrapeNet.

Poster
Mingzhen Huang · Xiaoxing Li · Jun Hu · Honghong Peng · Siwei Lyu

[ West Building Exhibit Halls ABC ]

Most existing multiple object tracking (MOT) methods that solely rely on appearance features struggle in tracking highly deformable objects. Other MOT methods that use motion clues to associate identities across frames have difficulty handling egocentric videos effectively or efficiently. In this work, we propose DETracker, a new MOT method that jointly detects and tracks deformable objects in egocentric videos. DETracker uses three novel modules, namely the motion disentanglement network (MDN), the patch association network (PAN) and the patch memory network (PMN), to explicitly tackle the difficulties caused by severe ego motion and fast morphing target objects. DETracker is end-to-end trainable and achieves near real-time speed. We also present DogThruGlasses, a large-scale deformable multi-object tracking dataset, with 150 videos and 73K annotated frames, collected by smart glasses. DETracker outperforms existing state-of-the-art method on the DogThruGlasses dataset and YouTube-Hand dataset.

Poster
Zhengwei Yang · Meng Lin · Xian Zhong · Yu Wu · Zheng Wang

[ West Building Exhibit Halls ABC ]

Entangled representation of clothing and identity (ID)-intrinsic clues are potentially concomitant in conventional person Re-IDentification (ReID). Nevertheless, eliminating the negative impact of clothing on ID remains challenging due to the lack of theory and the difficulty of isolating the exact implications. In this paper, a causality-based Auto-Intervention Model, referred to as AIM, is first proposed to mitigate clothing bias for robust cloth-changing person ReID (CC-ReID). Specifically, we analyze the effect of clothing on the model inference and adopt a dual-branch model to simulate causal intervention. Progressively, clothing bias is eliminated automatically with model training. AIM is encouraged to learn more discriminative ID clues that are free from clothing bias. Extensive experiments on two standard CC-ReID datasets demonstrate the superiority of the proposed AIM over other state-of-the-art methods.

Poster
Xuan-Bac Nguyen · Chi Nhan Duong · Xin Li · Susan Gauch · Han-Seok Seo · Khoa Luu

[ West Building Exhibit Halls ABC ]

Micro-expression recognition is one of the most challenging topics in affective computing. It aims to recognize tiny facial movements difficult for humans to perceive in a brief period, i.e., 0.25 to 0.5 seconds. Recent advances in pre-training deep Bidirectional Transformers (BERT) have significantly improved self-supervised learning tasks in computer vision. However, the standard BERT in vision problems is designed to learn only from full images or videos, and the architecture cannot accurately detect details of facial micro-expressions. This paper presents Micron-BERT (µ-BERT), a novel approach to facial micro-expression recognition. The proposed method can automatically capture these movements in an unsupervised manner based on two key ideas. First, we employ Diagonal Micro-Attention (DMA) to detect tiny differences between two frames. Second, we introduce a new Patch of Interest (PoI) module to localize and highlight micro-expression interest regions and simultaneously reduce noisy backgrounds and distractions. By incorporating these components into an end-to-end deep network, the proposed µ-BERT significantly outperforms all previous work in various micro-expression tasks. µ-BERT can be trained on a large-scale unlabeled dataset, i.e., up to 8 million images, and achieves high accuracy on new unseen facial micro-expression datasets. Empirical experiments show µ-BERT consistently outperforms state-of-the-art performance on four micro-expression …

Poster
Zhixi Cai · Shreya Ghosh · Kalin Stefanov · Abhinav Dhall · Jianfei Cai · Hamid Rezatofighi · Reza Haffari · Munawar Hayat

[ West Building Exhibit Halls ABC ]

This paper proposes a self-supervised approach to learn universal facial representations from videos, that can transfer across a variety of facial analysis tasks such as Facial Attribute Recognition (FAR), Facial Expression Recognition (FER), DeepFake Detection (DFD), and Lip Synchronization (LS). Our proposed framework, named MARLIN, is a facial video masked autoencoder, that learns highly robust and generic facial embeddings from abundantly available non-annotated web crawled facial videos. As a challenging auxiliary task, MARLIN reconstructs the spatio-temporal details of the face from the densely masked facial regions which mainly include eyes, nose, mouth, lips, and skin to capture local and global aspects that in turn help in encoding generic and transferable features. Through a variety of experiments on diverse downstream tasks, we demonstrate MARLIN to be an excellent facial video encoder as well as feature extractor, that performs consistently well across a variety of downstream tasks including FAR (1.13% gain over supervised benchmark), FER (2.64% gain over unsupervised benchmark), DFD (1.86% gain over unsupervised benchmark), LS (29.36% gain for Frechet Inception Distance), and even in low data regime. Our code and models are available at https://github.com/ControlNet/MARLIN.

Poster
Jiazhi Guan · Zhanwang Zhang · Hang Zhou · Tianshu Hu · Kaisiyuan Wang · Dongliang He · Haocheng Feng · Jingtuo Liu · Errui Ding · Ziwei Liu · Jingdong Wang

[ West Building Exhibit Halls ABC ]

Despite recent advances in syncing lip movements with any audio waves, current methods still struggle to balance generation quality and the model’s generalization ability. Previous studies either require long-term data for training or produce a similar movement pattern on all subjects with low quality. In this paper, we propose StyleSync, an effective framework that enables high-fidelity lip synchronization. We identify that a style-based generator would sufficiently enable such a charming property on both one-shot and few-shot scenarios. Specifically, we design a mask-guided spatial information encoding module that preserves the details of the given face. The mouth shapes are accurately modified by audio through modulated convolutions. Moreover, our design also enables personalized lip-sync by introducing style space and generator refinement on only limited frames. Thus the identity and talking style of a target person could be accurately preserved. Extensive experiments demonstrate the effectiveness of our method in producing high-fidelity results on a variety of scenes.

Poster
Samuel Clarke · Ruohan Gao · Mason Wang · Mark Rau · Julia Xu · Jui-Hsien Wang · Doug L. James · Jiajun Wu

[ West Building Exhibit Halls ABC ]

Objects make unique sounds under different perturbations, environment conditions, and poses relative to the listener. While prior works have modeled impact sounds and sound propagation in simulation, we lack a standard dataset of impact sound fields of real objects for audio-visual learning and calibration of the sim-to-real gap. We present RealImpact, a large-scale dataset of real object impact sounds recorded under controlled conditions. RealImpact contains 150,000 recordings of impact sounds of 50 everyday objects with detailed annotations, including their impact locations, microphone locations, contact force profiles, material labels, and RGBD images. We make preliminary attempts to use our dataset as a reference to current simulation methods for estimating object impact sounds that match the real world. Moreover, we demonstrate the usefulness of our dataset as a testbed for acoustic and audio-visual learning via the evaluation of two benchmark tasks, including listener location classification and visual acoustic matching.

Poster
Xiaoyu Zhu · Po-Yao Huang · Junwei Liang · Celso M. de Melo · Alexander G. Hauptmann

[ West Building Exhibit Halls ABC ]

We study the problem of human action recognition using motion capture (MoCap) sequences. Unlike existing techniques that take multiple manual steps to derive standardized skeleton representations as model input, we propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences. The model uses a hierarchical transformer with intra-frame off-set attention and inter-frame self-attention. The attention mechanism allows the model to freely attend between any two vertex patches to learn non-local relationships in the spatial-temporal domain. Masked vertex modeling and future frame prediction are used as two self-supervised tasks to fully activate the bi-directional and auto-regressive attention in our hierarchical transformer. The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models on common MoCap benchmarks. Code is available at https://github.com/zgzxy001/STMT.

Poster
Xueyan Huang · Yueyi Zhang · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

In this paper, we propose an efficient event-based motion estimation framework for various motion models. Different from previous works, we design a progressive event-to-map alignment scheme and utilize the spatio-temporal correlations to align events. In detail, we progressively align sampled events in an event batch to the time-surface map and obtain the updated motion model by minimizing a novel time-surface loss. In addition, a dynamic batch size strategy is applied to adaptively adjust the batch size so that all events in the batch are consistent with the current motion model. Our framework has three advantages: a) the progressive scheme refines motion parameters iteratively, achieving accurate motion estimation; b) within one iteration, only a small portion of events are involved in optimization, which greatly reduces the total runtime; c) the dynamic batch size strategy ensures that the constant velocity assumption always holds. We conduct comprehensive experiments to evaluate our framework on challenging high-speed scenes with three motion models: rotational, homography, and 6-DOF models. Experimental results demonstrate that our framework achieves state-of-the-art estimation accuracy and efficiency.

Poster
Manasi Muglikar · Leonard Bauersfeld · Diederik Paul Moeys · Davide Scaramuzza

[ West Building Exhibit Halls ABC ]

State-of-the-art solutions for Shape-from-Polarization (SfP) suffer from a speed-resolution tradeoff: they either sacrifice the number of polarization angles measured or necessitate lengthy acquisition times due to framerate constraints, thus compromising either accuracy or latency. We tackle this tradeoff using event cameras. Event cameras operate at microseconds resolution with negligible motion blur, and output a continuous stream of events that precisely measures how light changes over time asynchronously. We propose a setup that consists of a linear polarizer rotating at high speeds in front of an event camera. Our method uses the continuous event stream caused by the rotation to reconstruct relative intensities at multiple polarizer angles. Experiments demonstrate that our method outperforms physics-based baselines using frames, reducing the MAE by 25% in synthetic and real-world datasets. In the real world, we observe, however, that the challenging conditions (i.e., when few events are generated) harm the performance of physics-based solutions. To overcome this, we propose a learning-based approach that learns to estimate surface normals even at low event-rates, improving the physics-based approach by 52% on the real world dataset. The proposed system achieves an acquisition speed equivalent to 50 fps (>twice the framerate of the commercial polarization sensor) while retaining the …

Poster
Yunfan Lu · Zipeng Wang · Minjie Liu · Hongjian Wang · Lin Wang

[ West Building Exhibit Halls ABC ]

Event cameras sense the intensity changes asynchronously and produce event streams with high dynamic range and low latency. This has inspired research endeavors utilizing events to guide the challenging video super-resolution (VSR) task. In this paper, we make the first at tempt to address a novel problem of achieving VSR at random scales by taking advantages of the high temporal resolution property of events. This is hampered by the difficulties of representing the spatial-temporal information of events when guiding VSR. To this end, we propose a novel framework that incorporates the spatial-temporal interpolation of events to VSR in a unified framework. Our key idea is to learn implicit neural representations from queried spatial-temporal coordinates and features from both RGB frames and events. Our method contains three parts. Specifically, the Spatial-Temporal Fusion (STF) module first learns the 3D features from events and RGB frames. Then, the Temporal Filter (TF) module unlocks more explicit motion information from the events near the queried timestamp and generates the 2D features. Lastly, the Spatial-Temporal Implicit Representation (STIR) module recovers the SR frame in arbitrary resolutions from the outputs of these two modules. In addition, we collect a real-world dataset with spatially aligned events and RGB …

Poster
Junheum Park · Jintae Kim · Chang-Su Kim

[ West Building Exhibit Halls ABC ]

A novel 4K video frame interpolator based on bilateral transformer (BiFormer) is proposed in this paper, which performs three steps: global motion estimation, local motion refinement, and frame synthesis. First, in global motion estimation, we predict symmetric bilateral motion fields at a coarse scale. To this end, we propose BiFormer, the first transformer-based bilateral motion estimator. Second, we refine the global motion fields efficiently using blockwise bilateral cost volumes (BBCVs). Third, we warp the input frames using the refined motion fields and blend them to synthesize an intermediate frame. Extensive experiments demonstrate that the proposed BiFormer algorithm achieves excellent interpolation performance on 4K datasets. The source codes are available at https://github.com/JunHeum/BiFormer.

Poster
Xin Jin · Longhai Wu · Jie Chen · Youxin Chen · Jayoon Koo · Cheul-hee Hahm

[ West Building Exhibit Halls ABC ]

Flow-guided synthesis provides a common framework for frame interpolation, where optical flow is estimated to guide the synthesis of intermediate frames between consecutive inputs. In this paper, we present UPR-Net, a novel Unified Pyramid Recurrent Network for frame interpolation. Cast in a flexible pyramid framework, UPR-Net exploits lightweight recurrent modules for both bi-directional flow estimation and intermediate frame synthesis. At each pyramid level, it leverages estimated bi-directional flow to generate forward-warped representations for frame synthesis; across pyramid levels, it enables iterative refinement for both optical flow and intermediate frame. In particular, we show that our iterative synthesis strategy can significantly improve the robustness of frame interpolation on large motion cases. Despite being extremely lightweight (1.7M parameters), our base version of UPR-Net achieves excellent performance on a large range of benchmarks. Code and trained models of our UPR-Net series are available at: https://github.com/srcn-ivl/UPR-Net.

Poster
Wenming Weng · Yueyi Zhang · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Restoring sharp high frame-rate videos from low frame-rate blurry videos is a challenging problem. Existing blurry frame interpolation methods assume a predefined and known exposure time, which suffer from severe performance drop when applied to videos captured in the wild. In this paper, we study the problem of blurry frame interpolation under blind exposure with the assistance of an event camera. The high temporal resolution of the event camera is beneficial to obtain the exposure prior that is lost during the imaging process. Besides, sharp frames can be restored using event streams and blurry frames relying on the mutual constraint among them. Therefore, we first propose an exposure estimation strategy guided by event streams to estimate the lost exposure prior, transforming the blind exposure problem well-posed. Second, we propose to model the mutual constraint with a temporal-exposure control strategy through iterative residual learning. Our blurry frame interpolation method achieves a distinct performance boost over existing methods on both synthetic and self-collected real-world datasets under blind exposure.

Poster
Xiaoyu Shi · Zhaoyang Huang · Dasong Li · Manyuan Zhang · Ka Chun Cheung · Simon See · Hongwei Qin · Jifeng Dai · Hongsheng Li

[ West Building Exhibit Halls ABC ]

FlowFormer introduces a transformer architecture into optical flow estimation and achieves state-of-the-art performance. The core component of FlowFormer is the transformer-based cost-volume encoder. Inspired by recent success of masked autoencoding (MAE) pretraining in unleashing transformers’ capacity of encoding visual representation, we propose Masked Cost Volume Autoencoding (MCVA) to enhance FlowFormer by pretraining the cost-volume encoder with a novel MAE scheme. Firstly, we introduce a block-sharing masking strategy to prevent masked information leakage, as the cost maps of neighboring source pixels are highly correlated. Secondly, we propose a novel pre-text reconstruction task, which encourages the cost-volume encoder to aggregate long-range information and ensures pretraining-finetuning consistency. We also show how to modify the FlowFormer architecture to accommodate masks during pretraining. Pretrained with MCVA, our proposed FlowFormer++ ranks 1st among published methods on both Sintel and KITTI-2015 benchmarks. Specifically, FlowFormer++ achieves 1.07 and 1.94 average end-point-error (AEPE) on the clean and final pass of Sintel benchmark, leading to 7.76% and 7.18% error reductions from FlowFormer. FlowFormer++ obtains 4.52 F1-all on the KITTI-2015 test set, improving FlowFormer by 0.16.

Poster
Ce Zheng · Xianpeng Liu · Guo-Jun Qi · Chen Chen

[ West Building Exhibit Halls ABC ]

Transformer architectures have achieved SOTA performance on the human mesh recovery (HMR) from monocular images. However, the performance gain has come at the cost of substantial memory and computational overhead. A lightweight and efficient model to reconstruct accurate human mesh is needed for real-world applications. In this paper, we propose a pure transformer architecture named POoling aTtention TransformER (POTTER) for the HMR task from single images. Observing that the conventional attention module is memory and computationally expensive, we propose an efficient pooling attention module, which significantly reduces the memory and computational cost without sacrificing performance. Furthermore, we design a new transformer architecture by integrating a High-Resolution (HR) stream for the HMR task. The high-resolution local and global features from the HR stream can be utilized for recovering more accurate human mesh. Our POTTER outperforms the SOTA method METRO by only requiring 7% of total parameters and 14% of the Multiply-Accumulate Operations on the Human3.6M (PA-MPJPE) and 3DPW (all three metrics) datasets. Code will be publicly available.

Poster
Yuesong Wang · Zhaojie Zeng · Tao Guan · Wei Yang · Zhuo Chen · Wenkai Liu · Luoyuan Xu · Yawei Luo

[ West Building Exhibit Halls ABC ]

In recent years, deep learning-based approaches have shown great strength in multi-view stereo because of their outstanding ability to extract robust visual features. However, most learning-based methods need to build the cost volume and increase the receptive field enormously to get a satisfactory result when dealing with large-scale textureless regions, consequently leading to prohibitive memory consumption. To ensure both memory-friendly and textureless-resilient, we innovatively transplant the spirit of deformable convolution from deep learning into the traditional PatchMatch-based method. Specifically, for each pixel with matching ambiguity (termed unreliable pixel), we adaptively deform the patch centered on it to extend the receptive field until covering enough correlative reliable pixels (without matching ambiguity) that serve as anchors. When performing PatchMatch, constrained by the anchor pixels, the matching cost of an unreliable pixel is guaranteed to reach the global minimum at the correct depth and therefore increases the robustness of multi-view stereo significantly. To detect more anchor pixels to ensure better adaptive patch deformation, we propose to evaluate the matching ambiguity of a certain pixel by checking the convergence of the estimated depth as optimization proceeds. As a result, our method achieves state-of-the-art performance on ETH3D and Tanks and Temples while preserving low memory …

Poster
Zhenjie Yu · Shuang Li · Yirui Shen · Chi Harold Liu · Shuigen Wang

[ West Building Exhibit Halls ABC ]

Explicit visible videos can provide sufficient visual information and facilitate vision applications. Unfortunately, the image sensors of visible cameras are sensitive to light conditions like darkness or overexposure. To make up for this, recently, infrared sensors capable of stable imaging have received increasing attention in autonomous driving and monitoring. However, most prosperous vision models are still trained on massive clear visible data, facing huge visual gaps when deploying to infrared imaging scenarios. In such cases, transferring the infrared video to a distinct visible one with fine-grained semantic patterns is a worthwhile endeavor. Previous works improve the outputs by equally optimizing each patch on the translated visible results, which is unfair for enhancing the details on content-rich patches due to the long-tail effect of pixel distribution. Here we propose a novel CPTrans framework to tackle the challenge via balancing gradients of different patches, achieving the fine-grained Content-rich Patches Transferring. Specifically, the content-aware optimization module encourages model optimization along gradients of target patches, ensuring the improvement of visual details. Additionally, the content-aware temporal normalization module enforces the generator to be robust to the motions of target patches. Moreover, we extend the existing dataset InfraredCity to more challenging adverse weather conditions (rain and …

Poster
Aniket Dashpute · Vishwanath Saragadam · Emma Alexander · Florian Willomitzer · Aggelos Katsaggelos · Ashok Veeraraghavan · Oliver Cossairt

[ West Building Exhibit Halls ABC ]

Robust and non-destructive material classification is a challenging but crucial first-step in numerous vision applications. We propose a physics-guided material classification framework that relies on thermal properties of the object. Our key observation is that the rate of heating and cooling of an object depends on the unique intrinsic properties of the material, namely the emissivity and diffusivity. We leverage this observation by gently heating the objects in the scene with a low-power laser for a fixed duration and then turning it off, while a thermal camera captures measurements during the heating and cooling process. We then take this spatial and temporal “thermal spread function” (TSF) to solve an inverse heat equation using the finite-differences approach, resulting in a spatially varying estimate of diffusivity and emissivity. These tuples are then used to train a classifier that produces a fine-grained material label at each spatial pixel. Our approach is extremely simple requiring only a small light source (low power laser) and a thermal camera, and produces robust classification results with 86% accuracy over 16 classes

Poster
Xuhai Chen · Jiangning Zhang · Chao Xu · Yabiao Wang · Chengjie Wang · Yong Liu

[ West Building Exhibit Halls ABC ]

Most of the existing blind image Super-Resolution (SR) methods assume that the blur kernels are space-invariant. However, the blur involved in real applications are usually space-variant due to object motion, out-of-focus, etc., resulting in severe performance drop of the advanced SR methods. To address this problem, we firstly introduce two new datasets with out-of-focus blur, i.e., NYUv2-BSR and Cityscapes-BSR, to support further researches of blind SR with space-variant blur. Based on the datasets, we design a novel Cross-MOdal fuSion network (CMOS) that estimate both blur and semantics simultaneously, which leads to improved SR results. It involves a feature Grouping Interactive Attention (GIA) module to make the two modals interact more effectively and avoid inconsistency. GIA can also be used for the interaction of other features because of the universality of its structure. Qualitative and quantitative experiments compared with state-of-the-art methods on above datasets and real-world images demonstrate the superiority of our method, e.g., obtaining PSNR/SSIM by +1.91/+0.0048 on NYUv2-BSR than MANet.

Poster
Yuhui Wu · Chen Pan · Guoqing Wang · Yang Yang · Jiwei Wei · Chongyi Li · Heng Tao Shen

[ West Building Exhibit Halls ABC ]

Low-light image enhancement (LLIE) investigates how to improve illumination and produce normal-light images. The majority of existing methods improve low-light images via a global and uniform manner, without taking into account the semantic information of different regions. Without semantic priors, a network may easily deviate from a region’s original color. To address this issue, we propose a novel semantic-aware knowledge-guided framework (SKF) that can assist a low-light enhancement model in learning rich and diverse priors encapsulated in a semantic segmentation model. We concentrate on incorporating semantic knowledge from three key aspects: a semantic-aware embedding module that wisely integrates semantic priors in feature representation space, a semantic-guided color histogram loss that preserves color consistency of various instances, and a semantic-guided adversarial loss that produces more natural textures by semantic priors. Our SKF is appealing in acting as a general framework in LLIE task. Extensive experiments show that models equipped with the SKF significantly outperform the baselines on multiple datasets and our SKF generalizes to different models and scenes well. The code is available at Semantic-Aware-Low-Light-Image-Enhancement.

Poster
Zeyu Xiao · Yutong Liu · Ruisheng Gao · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Data augmentation (DA) is an efficient strategy for improving the performance of deep neural networks. Recent DA strategies have demonstrated utility in single image super-resolution (SR). Little research has, however, focused on the DA strategy for light field SR, in which multi-view information utilization is required. For the first time in light field SR, we propose a potent DA strategy called CutMIB to improve the performance of existing light field SR networks while keeping their structures unchanged. Specifically, CutMIB first cuts low-resolution (LR) patches from each view at the same location. Then CutMIB blends all LR patches to generate the blended patch and finally pastes the blended patch to the corresponding regions of high-resolution light field views, and vice versa. By doing so, CutMIB enables light field SR networks to learn from implicit geometric information during the training stage. Experimental results demonstrate that CutMIB can improve the reconstruction performance and the angular consistency of existing light field SR networks. We further verify the effectiveness of CutMIB on real-world light field SR and light field denoising. The implementation code is available at https://github.com/zeyuxiao1997/CutMIB.

Poster
Zixuan Fu · Lanqing Guo · Bihan Wen

[ West Building Exhibit Halls ABC ]

Modeling and synthesizing real noise in the standard RGB (sRGB) domain is challenging due to the complicated noise distribution. While most of the deep noise generators proposed to synthesize sRGB real noise using an end-to-end trained model, the lack of explicit noise modeling degrades the quality of their synthesized noise. In this work, we propose to model the real noise as not only dependent on the underlying clean image pixel intensity, but also highly correlated to its neighboring noise realization within the local region. Correspondingly, we propose a novel noise synthesizing framework by explicitly learning its neighboring correlation on top of the signal dependency. With the proposed noise model, our framework greatly bridges the distribution gap between synthetic noise and real noise. We show that our generated “real” sRGB noisy images can be used for training supervised deep denoisers, thus to improve their real denoising results with a large margin, comparing to the popular classic denoisers or the deep denoisers that are trained on other sRGB noise generators. The code will be available at https://github.com/xuan611/sRGB-Real-Noise-Synthesizing.

Poster
Haoyu Chen · Jinjin Gu · Yihao Liu · Salma Abdel Magid · Chao Dong · Qiong Wang · Hanspeter Pfister · Lei Zhu

[ West Building Exhibit Halls ABC ]

When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with the emergence of Transformer-based models that have achieved notable state-of-the-art results on various image tasks. However, deep learning-based methods often suffer from a lack of generalization ability. For example, deep models trained on Gaussian noise may perform poorly when tested on other noise distributions. To address this issue, we present a novel approach to enhance the generalization performance of denoising networks, known as masked training. Our method involves masking random pixels of the input image and reconstructing the missing information during training. We also mask out the features in the self-attention layers to avoid the impact of training-testing inconsistency. Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios. Additionally, our interpretability analysis demonstrates the superiority of our method.

Poster
Zhixin Wang · Ziying Zhang · Xiaoyun Zhang · Huangjie Zheng · Mingyuan Zhou · Ya Zhang · Yanfeng Wang

[ West Building Exhibit Halls ABC ]

Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training, while more complex cases could happen in the real world. This gap between the assumed and actual degradation hurts the restoration performance where artifacts are often observed in the output. However, it is expensive and infeasible to include every type of degradation to cover real-world cases in the training data. To tackle this robustness issue, we propose Diffusion-based Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image. By leveraging a well-performing denoising diffusion probabilistic model, our DR2 diffuses input images to a noisy status where various types of degradation give way to Gaussian noise, and then captures semantic information through iterative denoising steps. As a result, DR2 is robust against common degradation (e.g. blur, resize, noise and compression) and compatible with different designs of enhancement modules. Experiments in various settings show that our framework outperforms state-of-the-art methods on heavily degraded synthetic and real-world datasets.

Poster
Xin Li · Bingchen Li · Xin Jin · Cuiling Lan · Zhibo Chen

[ West Building Exhibit Halls ABC ]

In recent years, we have witnessed the great advancement of Deep neural networks (DNNs) in image restoration. However, a critical limitation is that they cannot generalize well to real-world degradations with different degrees or types. In this paper, we are the first to propose a novel training strategy for image restoration from the causality perspective, to improve the generalization ability of DNNs for unknown degradations. Our method, termed Distortion Invariant representation Learning (DIL), treats each distortion type and degree as one specific confounder, and learns the distortion-invariant representation by eliminating the harmful confounding effect of each degradation. We derive our DIL with the back-door criterion in causality by modeling the interventions of different distortions from the optimization perspective. Particularly, we introduce counterfactual distortion augmentation to simulate the virtual distortion types and degrees as the confounders. Then, we instantiate the intervention of each distortion with a virtual model updating based on corresponding distorted images, and eliminate them from the meta-learning perspective. Extensive experiments demonstrate the generalization capability of our DIL on unseen distortion types and degrees. Our code will be available at https://github.com/lixinustc/Causal-IR-DIL.

Poster
Seung Ho Park · Young Su Moon · Nam Ik Cho

[ West Building Exhibit Halls ABC ]

Single-image super-resolution (SISR) networks trained with perceptual and adversarial losses provide high-contrast outputs compared to those of networks trained with distortion-oriented losses, such as L1 or L2. However, it has been shown that using a single perceptual loss is insufficient for accurately restoring locally varying diverse shapes in images, often generating undesirable artifacts or unnatural details. For this reason, combinations of various losses, such as perceptual, adversarial, and distortion losses, have been attempted, yet it remains challenging to find optimal combinations. Hence, in this paper, we propose a new SISR framework that applies optimal objectives for each region to generate plausible results in overall areas of high-resolution outputs. Specifically, the framework comprises two models: a predictive model that infers an optimal objective map for a given low-resolution (LR) input and a generative model that applies a target objective map to produce the corresponding SR output. The generative model is trained over our proposed objective trajectory representing a set of essential objectives, which enables the single network to learn various SR results corresponding to combined losses on the trajectory. The predictive model is trained using pairs of LR images and corresponding optimal objective maps searched from the objective trajectory. Experimental results …

Poster
Xinmiao Lin · Yikang Li · Jenhao Hsiao · Chiuman Ho · Yu Kong

[ West Building Exhibit Halls ABC ]

The popular VQ-VAE models reconstruct images through learning a discrete codebook but suffer from a significant issue in the rapid quality degradation of image reconstruction as the compression rate rises. One major reason is that a higher compression rate induces more loss of visual signals on the higher frequency spectrum, which reflect the details on pixel space. In this paper, a Frequency Complement Module (FCM) architecture is proposed to capture the missing frequency information for enhancing reconstruction quality. The FCM can be easily incorporated into the VQ-VAE structure, and we refer to the new model as Frequancy Augmented VAE (FA-VAE). In addition, a Dynamic Spectrum Loss (DSL) is introduced to guide the FCMs to balance between various frequencies dynamically for optimal reconstruction. FA-VAE is further extended to the text-to-image synthesis task, and a Cross-attention Autoregressive Transformer (CAT) is proposed to obtain more precise semantic attributes in texts. Extensive reconstruction experiments with different compression rates are conducted on several benchmark datasets, and the results demonstrate that the proposed FA-VAE is able to restore more faithfully the details compared to SOTA methods. CAT also shows improved generation quality with better image-text semantic alignment.

Poster
Zicheng Zhang · Wei Wu · Wei Sun · Danyang Tu · Wei Lu · Xiongkuo Min · Ying Chen · Guangtao Zhai

[ West Building Exhibit Halls ABC ]

User-generated content (UGC) live videos are often bothered by various distortions during capture procedures and thus exhibit diverse visual qualities. Such source videos are further compressed and transcoded by media server providers before being distributed to end-users. Because of the flourishing of UGC live videos, effective video quality assessment (VQA) tools are needed to monitor and perceptually optimize live streaming videos in the distributing process. Unfortunately, existing compressed UGC VQA databases are either small in scale or employ high-quality UGC videos as source videos, so VQA models developed on these databases have limited abilities to evaluate UGC live videos. In this paper, we address UGC Live VQA problems by constructing a first-of-a-kind subjective UGC Live VQA database and developing an effective evaluation tool. Concretely, 418 source UGC videos are collected in real live streaming scenarios and 3,762 compressed ones at different bit rates are generated for the subsequent subjective VQA experiments. Based on the built database, we develop a Multi-Dimensional VQA (MD-VQA) evaluator to measure the visual quality of UGC live videos from semantic, distortion, and motion aspects respectively. Extensive experimental results show that MD-VQA achieves state-of-the-art performance on both our UGC Live VQA database and existing compressed UGC VQA …

Poster
Senmao Tian · Ming Lu · Jiaming Liu · Yandong Guo · Yurong Chen · Shunli Zhang

[ West Building Exhibit Halls ABC ]

With the development of high-definition display devices, the practical scenario of Super-Resolution (SR) usually needs to super-resolve large input like 2K to higher resolution (4K/8K). To reduce the computational and memory cost, current methods first split the large input into local patches and then merge the SR patches into the output. These methods adaptively allocate a subnet for each patch. Quantization is a very important technique for network acceleration and has been used to design the subnets. Current methods train an MLP bit selector to determine the propoer bit for each layer. However, they uniformly sample subnets for training, making simple subnets overfitted and complicated subnets underfitted. Therefore, the trained bit selector fails to determine the optimal bit. Apart from this, the introduced bit selector brings additional cost to each layer of the SR network. In this paper, we propose a novel method named Content-Aware Bit Mapping (CABM), which can remove the bit selector without any performance loss. CABM also learns a bit selector for each layer during training. After training, we analyze the relation between the edge information of an input patch and the bit of each layer. We observe that the edge information can be an effective metric …

Poster
Ann-Christin Woerl · Jan Disselhoff · Michael Wand

[ West Building Exhibit Halls ABC ]

In this paper, we examine gradients of logits of image classification CNNs by input pixel values. We observe that these fluctuate considerably with training randomness, such as the random initialization of the networks. We extend our study to gradients of intermediate layers, obtained via GradCAM, as well as popular network saliency estimators such as DeepLIFT, SHAP, LIME, Integrated Gradients, and SmoothGrad. While empirical noise levels vary, qualitatively different attributions to image features are still possible with all of these, which comes with implications for interpreting such attributions, in particular when seeking data-driven explanations of the phenomenon generating the data. Finally, we demonstrate that the observed artefacts can be removed by marginalization over the initialization distribution by simple stochastic integration.

Poster
Jie-En Yao · Li-Yuan Tsao · Yi-Chen Lo · Roy Tseng · Chia-Che Chang · Chun-Yi Lee

[ West Building Exhibit Halls ABC ]

Flow-based methods have demonstrated promising results in addressing the ill-posed nature of super-resolution (SR) by learning the distribution of high-resolution (HR) images with the normalizing flow. However, these methods can only perform a predefined fixed-scale SR, limiting their potential in real-world applications. Meanwhile, arbitrary-scale SR has gained more attention and achieved great progress. Nonetheless, previous arbitrary-scale SR methods ignore the ill-posed problem and train the model with per-pixel L1 loss, leading to blurry SR outputs. In this work, we propose “Local Implicit Normalizing Flow” (LINF) as a unified solution to the above problems. LINF models the distribution of texture details under different scaling factors with normalizing flow. Thus, LINF can generate photo-realistic HR images with rich texture details in arbitrary scale factors. We evaluate LINF with extensive experiments and show that LINF achieves the state-of-the-art perceptual quality compared with prior arbitrary-scale SR methods.

Poster
Xiaohang Wang · Xuanhong Chen · Bingbing Ni · Hang Wang · Zhengyan Tong · Yutian Liu

[ West Building Exhibit Halls ABC ]

The ability of scale-equivariance processing blocks plays a central role in arbitrary-scale image super-resolution tasks. Inspired by this crucial observation, this work proposes two novel scale-equivariant modules within a transformer-style framework to enhance arbitrary-scale image super-resolution (ASISR) performance, especially in high upsampling rate image extrapolation. In the feature extraction phase, we design a plug-in module called Adaptive Feature Extractor, which injects explicit scale information in frequency-expanded encoding, thus achieving scale-adaption in representation learning. In the upsampling phase, a learnable Neural Kriging upsampling operator is introduced, which simultaneously encodes both relative distance (i.e., scale-aware) information as well as feature similarity (i.e., with priori learned from training data) in a bilateral manner, providing scale-encoded spatial feature fusion. The above operators are easily plugged into multiple stages of a SR network, and a recent emerging pre-training strategy is also adopted to impulse the model’s performance further. Extensive experimental results have demonstrated the outstanding scale-equivariance capability offered by the proposed operators and our learning framework, with much better results than previous SOTAs at arbitrary scales for SR. Our code is available at https://github.com/neuralchen/EQSR.

Poster
Jiezhang Cao · Qin Wang · Yongqin Xian · Yawei Li · Bingbing Ni · Zhiming Pi · Kai Zhang · Yulun Zhang · Radu Timofte · Luc Van Gool

[ West Building Exhibit Halls ABC ]

Learning continuous image representations is recently gaining popularity for image super-resolution (SR) because of its ability to reconstruct high-resolution images with arbitrary scales from low-resolution inputs. Existing methods mostly ensemble nearby features to predict the new pixel at any queried coordinate in the SR image. Such a local ensemble suffers from some limitations: i) it has no learnable parameters and it neglects the similarity of the visual features; ii) it has a limited receptive field and cannot ensemble relevant features in a large field which are important in an image. To address these issues, this paper proposes a continuous implicit attention-in-attention network, called CiaoSR. We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features. Furthermore, we embed a scale-aware attention in this implicit attention network to exploit additional non-local information. Extensive experiments on benchmark datasets demonstrate CiaoSR significantly outperforms the existing single image SR methods with the same backbone. In addition, CiaoSR also achieves the state-of-the-art performance on the arbitrary-scale SR task. The effectiveness of the method is also demonstrated on the real-world SR setting. More importantly, CiaoSR can be flexibly integrated into any backbone to improve the SR performance.

Poster
Yishun Dou · Zhong Zheng · Qiaoqiao Jin · Bingbing Ni

[ West Building Exhibit Halls ABC ]

We develop a simple yet surprisingly effective implicit representing scheme called Multiplicative Fourier Level of Detail (MFLOD) motivated by the recent success of multiplicative filter network. Built on multi-resolution feature grid/volume (e.g., the sparse voxel octree), each level’s feature is first modulated by a sinusoidal function and then element-wisely multiplied by a linear transformation of previous layer’s representation in a layer-to-layer recursive manner, yielding the scale-aggregated encodings for a subsequent simple linear forward to get final output. In contrast to previous hybrid representations relying on interleaved multilevel fusion and nonlinear activation-based decoding, MFLOD could be elegantly characterized as a linear combination of sine basis functions with varying amplitude, frequency, and phase upon the learned multilevel features, thus offering great feasibility in Fourier analysis. Comprehensive experimental results on implicit neural representation learning tasks including image fitting, 3D shape representation, and neural radiance fields well demonstrate the superior quality and generalizability achieved by the proposed MFLOD scheme.

Poster
Ling Zhang · Yinghao He · Qing Zhang · Zheng Liu · Xiaolong Zhang · Chunxia Xiao

[ West Building Exhibit Halls ABC ]

Existing works on document image shadow removal mostly depend on learning and leveraging a constant background (the color of the paper) from the image. However, the constant background is less representative and frequently ignores other background colors, such as the printed colors, resulting in distorted results. In this paper, we present a color-aware background extraction network (CBENet) for extracting a spatially varying background image that accurately depicts the background colors of the document. Furthermore, we propose a background-guided document images shadow removal network (BGShadowNet) using the predicted spatially varying background as auxiliary information, which consists of two stages. At Stage I, a background-constrained decoder is designed to promote a coarse result. Then, the coarse result is refined with a background-based attention module (BAModule) to maintain a consistent appearance and a detail improvement module (DEModule) to enhance the texture details at Stage II. Experiments on two benchmark datasets qualitatively and quantitatively validate the superiority of the proposed approach over state-of-the-arts.

Poster
Hamza Pehlivan · Yusuf Dalva · Aysegul Dundar

[ West Building Exhibit Halls ABC ]

We present a novel image inversion framework and a training pipeline to achieve high-fidelity image inversion with high-quality attribute editing. Inverting real images into StyleGAN’s latent space is an extensively studied problem, yet the trade-off between the image reconstruction fidelity and image editing quality remains an open challenge. The low-rate latent spaces are limited in their expressiveness power for high-fidelity reconstruction. On the other hand, high-rate latent spaces result in degradation in editing quality. In this work, to achieve high-fidelity inversion, we learn residual features in higher latent codes that lower latent codes were not able to encode. This enables preserving image details in reconstruction. To achieve high-quality editing, we learn how to transform the residual features for adapting to manipulations in latent codes. We train the framework to extract residual features and transform them via a novel architecture pipeline and cycle consistency losses. We run extensive experiments and compare our method with state-of-the-art inversion methods. Qualitative metrics and visual comparisons show significant improvements.

Poster
Sijie Zhu · Zhe Lin · Scott Cohen · Jason Kuen · Zhifei Zhang · Chen Chen

[ West Building Exhibit Halls ABC ]

We investigate the problem of automatically placing an object into a background image for image compositing. Given a background image and a segmented object, the goal is to train a model to predict plausible placements (location and scale) of the object for compositing. The quality of the composite image highly depends on the predicted location/scale. Existing works either generate candidate bounding boxes or apply sliding-window search using global representations from background and object images, which fail to model local information in background images. However, local clues in background images are important to determine the compatibility of placing the objects with certain locations/scales. In this paper, we propose to learn the correlation between object features and all local background features with a transformer module so that detailed information can be provided on all possible location/scale configurations. A sparse contrastive loss is further proposed to train our model with sparse supervision. Our new formulation generates a 3D heatmap indicating the plausibility of all location/scale combinations in one network forward pass, which is >10× faster than the previous sliding-window method. It also supports interactive search when users provide a pre-defined location or scale. The proposed method can be trained with explicit annotation or …

Poster
Zeqing Xia · Bojun Xiong · Zhouhui Lian

[ West Building Exhibit Halls ABC ]

Font design is of vital importance in the digital content design and modern printing industry. Developing algorithms capable of automatically synthesizing vector fonts can significantly facilitate the font design process. However, existing methods mainly concentrate on raster image generation, and only a few approaches can directly synthesize vector fonts. This paper proposes an end-to-end trainable method, VecFontSDF, to reconstruct and synthesize high-quality vector fonts using signed distance functions (SDFs). Specifically, based on the proposed SDF-based implicit shape representation, VecFontSDF learns to model each glyph as shape primitives enclosed by several parabolic curves, which can be precisely converted to quadratic Bézier curves that are widely used in vector font products. In this manner, most image generation methods can be easily extended to synthesize vector fonts. Qualitative and quantitative experiments conducted on a publicly-available dataset demonstrate that our method obtains high-quality results on several tasks, including vector font reconstruction, interpolation, and few-shot vector font synthesis, markedly outperforming the state of the art.

Poster
Chi Wang · Min Zhou · Tiezheng Ge · Yuning Jiang · Hujun Bao · Weiwei Xu

[ West Building Exhibit Halls ABC ]

Content and style disentanglement is an effective way to achieve few-shot font generation. It allows to transfer the style of the font image in a source domain to the style defined with a few reference images in a target domain. However, the content feature extracted using a representative font might not be optimal. In light of this, we propose a content fusion module (CFM) to project the content feature into a linear space defined by the content features of basis fonts, which can take the variation of content features caused by different fonts into consideration. Our method also allows to optimize the style representation vector of reference images through a lightweight iterative style-vector refinement (ISR) strategy. Moreover, we treat the 1D projection of a character image as a probability distribution and leverage the distance between two distributions as the reconstruction loss (namely projected character loss, PCL). Compared to L2 or L1 reconstruction loss, the distribution distance pays more attention to the global shape of characters. We have evaluated our method on a dataset of 300 fonts with 6.5k characters each. Experimental results verify that our method outperforms existing state-of-the-art few-shot font generation methods by a large margin. The source code …

Poster
Wuyang Luo · Su Yang · Xinjian Zhang · Weishan Zhang

[ West Building Exhibit Halls ABC ]

Semantic image editing provides users with a flexible tool to modify a given image guided by a corresponding segmentation map. In this task, the features of the foreground objects and the backgrounds are quite different. However, all previous methods handle backgrounds and objects as a whole using a monolithic model. Consequently, they remain limited in processing content-rich images and suffer from generating unrealistic objects and texture-inconsistent backgrounds. To address this issue, we propose a novel paradigm, Semantic Image Editing by Disentangling Object and Background (SIEDOB), the core idea of which is to explicitly leverages several heterogeneous subnetworks for objects and backgrounds. First, SIEDOB disassembles the edited input into background regions and instance-level objects. Then, we feed them into the dedicated generators. Finally, all synthesized parts are embedded in their original locations and utilize a fusion network to obtain a harmonized result. Moreover, to produce high-quality edited images, we propose some innovative designs, including Semantic-Aware Self-Propagation Module, Boundary-Anchored Patch Discriminator, and Style-Diversity Object Generator, and integrate them into SIEDOB. We conduct extensive experiments on Cityscapes and ADE20K-Room datasets and exhibit that our method remarkably outperforms the baselines, especially in synthesizing realistic and diverse objects and texture-consistent backgrounds.

Poster
Dina Bashkirova · José Lezama · Kihyuk Sohn · Kate Saenko · Irfan Essa

[ West Building Exhibit Halls ABC ]

Recent conditional image generation methods produce images of remarkable diversity, fidelity and realism. However, the majority of these methods allow conditioning only on labels or text prompts, which limits their level of control over the generation result. In this paper, we introduce MaskSketch, an image generation method that allows spatial conditioning of the generation result using a guiding sketch as an extra conditioning signal during sampling. MaskSketch utilizes a pre-trained masked generative transformer, requiring no model training or paired supervision, and works with input sketches of different levels of abstraction. We show that intermediate self-attention maps of a masked generative transformer encode important structural information of the input image, such as scene layout and object shape, and we propose a novel sampling method based on this observation to enable structure-guided generation. Our results show that MaskSketch achieves high image realism and fidelity to the guiding structure. Evaluated on standard benchmark datasets, MaskSketch outperforms state-of-the-art methods for sketch-to-image translation, as well as unpaired image-to-image translation approaches. The code can be found on our project website: https://masksketch.github.io/

Poster
Inwoo Hwang · Hyeonwoo Kim · Young Min Kim

[ West Building Exhibit Halls ABC ]

We propose Text2Scene, a method to automatically create realistic textures for virtual scenes composed of multiple objects. Guided by a reference image and text descriptions, our pipeline adds detailed texture on labeled 3D geometries in the room such that the generated colors respect the hierarchical structure or semantic parts that are often composed of similar materials. Instead of applying flat stylization on the entire scene at a single step, we obtain weak semantic cues from geometric segmentation, which are further clarified by assigning initial colors to segmented parts. Then we add texture details for individual objects such that their projections on image space exhibit feature embedding aligned with the embedding of the input. The decomposition makes the entire pipeline tractable to a moderate amount of computation resources and memory. As our framework utilizes the existing resources of image and text embedding, it does not require dedicated datasets with high-quality textures designed by skillful artists. To the best of our knowledge, it is the first practical and scalable approach that can create detailed and realistic textures of the desired style that maintain structural context for scenes with multiple objects.

Poster
Qiucheng Wu · Yujian Liu · Handong Zhao · Ajinkya Kale · Trung Bui · Tong Yu · Zhe Lin · Yang Zhang · Shiyu Chang

[ West Building Exhibit Halls ABC ]

Generative models have been widely studied in computer vision. Recently, diffusion models have drawn substantial attention due to the high quality of their generated images. A key desired property of image generative models is the ability to disentangle different attributes, which should enable modification towards a style without changing the semantic content, and the modification parameters should generalize to different images. Previous studies have found that generative adversarial networks (GANs) are inherently endowed with such disentanglement capability, so they can perform disentangled image editing without re-training or fine-tuning the network. In this work, we explore whether diffusion models are also inherently equipped with such a capability. Our finding is that for stable diffusion models, by partially changing the input text embedding from a neutral description (e.g., “a photo of person”) to one with style (e.g., “a photo of person with smile”) while fixing all the Gaussian random noises introduced during the denoising process, the generated images can be modified towards the target style without changing the semantic content. Based on this finding, we further propose a simple, light-weight image editing algorithm where the mixing weights of the two text embeddings are optimized for style matching and content preservation. This entire …

Poster
Ajay Jain · Amber Xie · Pieter Abbeel

[ West Building Exhibit Halls ABC ]

Diffusion models have shown impressive results in text-to-image synthesis. Using massive datasets of captioned images, diffusion models learn to generate raster images of highly diverse objects and scenes. However, designers frequently use vector representations of images like Scalable Vector Graphics (SVGs) for digital icons, graphics and stickers. Vector graphics can be scaled to any size, and are compact. In this work, we show that a text-conditioned diffusion model trained on pixel representations of images can be used to generate SVG-exportable vector graphics. We do so without access to large datasets of captioned SVGs. Instead, inspired by recent work on text-to-3D synthesis, we vectorize a text-to-image diffusion sample and fine-tune with a Score Distillation Sampling loss. By optimizing a differentiable vector graphics rasterizer, our method distills abstract semantic knowledge out of a pretrained diffusion model. By constraining the vector representation, we can also generate coherent pixel art and sketches. Our approach, VectorFusion, produces more coherent graphics than prior works that optimize CLIP, a contrastive image-text model.

Poster
Narek Tumanyan · Michal Geyer · Shai Bagon · Tali Dekel

[ West Building Exhibit Halls ABC ]

Large-scale text-to-image generative models have been a revolutionary breakthrough in the evolution of generative AI, synthesizing diverse images with highly complex visual concepts. However, a pivotal challenge in leveraging such models for real-world content creation is providing users with control over the generated content. In this paper, we present a new framework that takes text-to-image synthesis to the realm of image-to-image translation -- given a guidance image and a target text prompt as input, our method harnesses the power of a pre-trained text-to-image diffusion model to generate a new image that complies with the target text, while preserving the semantic layout of the guidance image. Specifically, we observe and empirically demonstrate that fine-grained control over the generated structure can be achieved by manipulating spatial features and their self-attention inside the model. This results in a simple and effective approach, where features extracted from the guidance image are directly injected into the generation process of the translated image, requiring no training or fine-tuning. We demonstrate high-quality results on versatile text-guided image translation tasks, including translating sketches, rough drawings and animations into realistic images, changing the class and appearance of objects in a given image, and modifying global qualities such as lighting …

Poster
Nupur Kumari · Bingliang Zhang · Richard Zhang · Eli Shechtman · Jun-Yan Zhu

[ West Building Exhibit Halls ABC ]

While generative models produce high-quality images of concepts learned from a large-scale database, a user often wishes to synthesize instantiations of their own concepts (for example, their family, pets, or items). Can we teach a model to quickly acquire a new concept, given a few examples? Furthermore, can we compose multiple new concepts together? We propose Custom Diffusion, an efficient method for augmenting existing text-to-image models. We find that only optimizing a few parameters in the text-to-image conditioning mechanism is sufficiently powerful to represent new concepts while enabling fast tuning (~6 minutes). Additionally, we can jointly train for multiple concepts or combine multiple fine-tuned models into one via closed-form constrained optimization. Our fine-tuned model generates variations of multiple new concepts and seamlessly composes them with existing concepts in novel settings. Our method outperforms or performs on par with several baselines and concurrent works in both qualitative and quantitative evaluations, while being memory and computationally efficient.

Poster
Mude Hui · Zhizheng Zhang · Xiaoyi Zhang · Wenxuan Xie · Yuwang Wang · Yan Lu

[ West Building Exhibit Halls ABC ]

Layout generation aims to synthesize realistic graphic scenes consisting of elements with different attributes including category, size, position, and between-element relation. It is a crucial task for reducing the burden on heavy-duty graphic design works for formatted scenes, e.g., publications, documents, and user interfaces (UIs). Diverse application scenarios impose a big challenge in unifying various layout generation subtasks, including conditional and unconditional generation. In this paper, we propose a Layout Diffusion Generative Model (LDGM) to achieve such unification with a single decoupled diffusion model. LDGM views a layout of arbitrary missing or coarse element attributes as an intermediate diffusion status from a completed layout. Since different attributes have their individual semantics and characteristics, we propose to decouple the diffusion processes for them to improve the diversity of training samples and learn the reverse process jointly to exploit global-scope contexts for facilitating generation. As a result, our LDGM can generate layouts either from scratch or conditional on arbitrary available attributes. Extensive qualitative and quantitative experiments demonstrate our proposed LDGM outperforms existing layout generation models in both functionality and performance.

Poster
Bo Li · Kaitao Xue · Bin Liu · Yu-Kun Lai

[ West Building Exhibit Halls ABC ]

Image-to-image translation is an important and challenging problem in computer vision and image processing. Diffusion models(DM) have shown great potentials for high-quality image synthesis, and have gained competitive performance on the task of image-to-image translation. However, most of the existing diffusion models treat image-to-image translation as conditional generation processes, and suffer heavily from the gap between distinct domains. In this paper, a novel image-to-image translation method based on the Brownian Bridge Diffusion Model(BBDM) is proposed, which models image-to-image translation as a stochastic Brownian Bridge process, and learns the translation between two domains directly through the bidirectional diffusion process rather than a conditional generation process. To the best of our knowledge, it is the first work that proposes Brownian Bridge diffusion process for image-to-image translation. Experimental results on various benchmarks demonstrate that the proposed BBDM model achieves competitive performance through both visual inspection and measurable metrics.

Poster
Hyojun Go · Yunsung Lee · Jin-Young Kim · Seunghyun Lee · Myeongho Jeong · Hyun Seung Lee · Seungtaek Choi

[ West Building Exhibit Halls ABC ]

Diffusion-based generative models have achieved remarkable success in image generation. Their guidance formulation allows an external model to plug-and-play control the generation process for various tasks without fine-tuning the diffusion model. However, the direct use of publicly available off-the-shelf models for guidance fails due to their poor performance on noisy inputs. For that, the existing practice is to fine-tune the guidance models with labeled data corrupted with noises. In this paper, we argue that this practice has limitations in two aspects: (1) performing on inputs with extremely various noises is too hard for a single guidance model; (2) collecting labeled datasets hinders scaling up for various tasks. To tackle the limitations, we propose a novel strategy that leverages multiple experts where each expert is specialized in a particular noise range and guides the reverse process of the diffusion at its corresponding timesteps. However, as it is infeasible to manage multiple networks and utilize labeled data, we present a practical guidance framework termed Practical Plug-And-Play (PPAP), which leverages parameter-efficient fine-tuning and data-free knowledge transfer. We exhaustively conduct ImageNet class conditional generation experiments to show that our method can successfully guide diffusion with small trainable parameters and no labeled data. Finally, we …

Poster
Yuzhang Shang · Zhihang Yuan · Bin Xie · Bingzhe Wu · Yan Yan

[ West Building Exhibit Halls ABC ]

Denoising diffusion (score-based) generative models have recently achieved significant accomplishments in generating realistic and diverse data. These approaches define a forward diffusion process for transforming data into noise and a backward denoising process for sampling data from noise. Unfortunately, the generation process of current denoising diffusion models is notoriously slow due to the lengthy iterative noise estimations, which rely on cumbersome neural networks. It prevents the diffusion models from being widely deployed, especially on edge devices. Previous works accelerate the generation process of diffusion model (DM) via finding shorter yet effective sampling trajectories. However, they overlook the cost of noise estimation with a heavy network in every iteration. In this work, we accelerate generation from the perspective of compressing the noise estimation network. Due to the difficulty of retraining DMs, we exclude mainstream training-aware compression paradigms and introduce post-training quantization (PTQ) into DM acceleration. However, the output distributions of noise estimation networks change with time-step, making previous PTQ methods fail in DMs since they are designed for single-time step scenarios. To devise a DM-specific PTQ method, we explore PTQ on DM in three aspects: quantized operations, calibration dataset, and calibration metric. We summarize and use several observations derived from all-inclusive …

Poster
Shuai Shen · Wenliang Zhao · Zibin Meng · Wanhua Li · Zheng Zhu · Jie Zhou · Jiwen Lu

[ West Building Exhibit Halls ABC ]

Talking head synthesis is a promising approach for the video production industry. Recently, a lot of effort has been devoted in this research area to improve the generation quality or enhance the model generalization. However, there are few works able to address both issues simultaneously, which is essential for practical applications. To this end, in this paper, we turn attention to the emerging powerful Latent Diffusion Models, and model the Talking head generation as an audio-driven temporally coherent denoising process (DiffTalk). More specifically, instead of employing audio signals as the single driving factor, we investigate the control mechanism of the talking face, and incorporate reference face images and landmarks as conditions for personality-aware generalized synthesis. In this way, the proposed DiffTalk is capable of producing high-quality talking head videos in synchronization with the source audio, and more importantly, it can be naturally generalized across different identities without any further fine-tuning. Additionally, our DiffTalk can be gracefully tailored for higher-resolution synthesis with negligible extra computational cost. Extensive experiments show that the proposed DiffTalk efficiently synthesizes high-fidelity audio-driven talking head videos for generalized novel identities. For more video results, please refer to https://sstzal.github.io/DiffTalk/.

Poster
Kwanyong Park · Sanghyun Woo · Seoung Wug Oh · In So Kweon · Joon-Young Lee

[ West Building Exhibit Halls ABC ]

Mask-guided matting has shown great practicality compared to traditional trimap-based methods. The mask-guided approach takes an easily-obtainable coarse mask as guidance and produces an accurate alpha matte. To extend the success toward practical usage, we tackle mask-guided matting in the wild, which covers a wide range of categories in their complex context robustly. To this end, we propose a simple yet effective learning framework based on two core insights: 1) learning a generalized matting model that can better understand the given mask guidance and 2) leveraging weak supervision datasets (e.g., instance segmentation dataset) to alleviate the limited diversity and scale of existing matting datasets. Extensive experimental results on multiple benchmarks, consisting of a newly proposed synthetic benchmark (Composition-Wild) and existing natural datasets, demonstrate the superiority of the proposed method. Moreover, we provide appealing results on new practical applications (e.g., panoptic matting and mask-guided video matting), showing the great generality and potential of our model.

Poster
Mengqi Huang · Zhendong Mao · Quan Wang · Yongdong Zhang

[ West Building Exhibit Halls ABC ]

Existing autoregressive models follow the two-stage generation paradigm that first learns a codebook in the latent space for image reconstruction and then completes the image generation autoregressively based on the learned codebook. However, existing codebook learning simply models all local region information of images without distinguishing their different perceptual importance, which brings redundancy in the learned codebook that not only limits the next stage’s autoregressive model’s ability to model important structure but also results in high training cost and slow generation speed. In this study, we borrow the idea of importance perception from classical image coding theory and propose a novel two-stage framework, which consists of Masked Quantization VAE (MQ-VAE) and Stackformer, to relieve the model from modeling redundancy. Specifically, MQ-VAE incorporates an adaptive mask module for masking redundant region features before quantization and an adaptive de-mask module for recovering the original grid image feature map to faithfully reconstruct the original images after quantization. Then, Stackformer learns to predict the combination of the next code and its position in the feature map. Comprehensive experiments on various image generation validate our effectiveness and efficiency.

Poster
Yingwei Wang · Takashi Isobe · Xu Jia · Xin Tao · Huchuan Lu · Yu-Wing Tai

[ West Building Exhibit Halls ABC ]

Videos stored on mobile devices or delivered on the Internet are usually in compressed format and are of various unknown compression parameters, but most video super-resolution (VSR) methods often assume ideal inputs resulting in large performance gap between experimental settings and real-world applications. In spite of a few pioneering works being proposed recently to super-resolve the compressed videos, they are not specially designed to deal with videos of various levels of compression. In this paper, we propose a novel and practical compression-aware video super-resolution model, which could adapt its video enhancement process to the estimated compression level. A compression encoder is designed to model compression levels of input frames, and a base VSR model is then conditioned on the implicitly computed representation by inserting compression-aware modules. In addition, we propose to further strengthen the VSR model by taking full advantage of meta data that is embedded naturally in compressed video streams in the procedure of information fusion. Extensive experiments are conducted to demonstrate the effectiveness and efficiency of the proposed method on compressed VSR benchmarks.

Poster
Nilesh Ahuja · Parual Datta · Bhavya Kanzariya · V. Srinivasa Somayazulu · Omesh Tickoo

[ West Building Exhibit Halls ABC ]

Thanks to advances in computer vision and AI, there has been a large growth in the demand for cloud-based visual analytics in which images captured by a low-powered edge device are transmitted to the cloud for analytics. Use of conventional codecs (JPEG, MPEG, HEVC, etc.) for compressing such data introduces artifacts that can seriously degrade the performance of the downstream analytic tasks. Split-DNN computing has emerged as a paradigm to address such usages, in which a DNN is partitioned into a client-side portion and a server side portion. Low-complexity neural networks called ‘bottleneck units’ are introduced at the split point to transform the intermediate layer features into a lower-dimensional representation better suited for compression and transmission. Optimizing the pipeline for both compression and task-performance requires high-quality estimates of the information-theoretic rate of the intermediate features. Most works on compression for image analytics use heuristic approaches to estimate the rate, leading to suboptimal performance. We propose a high-quality ‘neural rate-estimator’ to address this gap. We interpret the lower-dimensional bottleneck output as a latent representation of the intermediate feature and cast the rate-distortion optimization problem as one of training an equivalent variational auto-encoder with an appropriate loss function. We show that this …

Poster
Qi Zhao · M. Salman Asif · Zhan Ma

[ West Building Exhibit Halls ABC ]

Existing implicit neural representation (INR) methods do not fully exploit spatiotemporal redundancies in videos. Index-based INRs ignore the content-specific spatial features and hybrid INRs ignore the contextual dependency on adjacent frames, leading to poor modeling capability for scenes with large motion or dynamics. We analyze this limitation from the perspective of function fitting and reveal the importance of frame difference. To use explicit motion information, we propose Difference Neural Representation for Videos (DNeRV), which consists of two streams for content and frame difference. We also introduce a collaborative content unit for effective feature fusion. We test DNeRV for video compression, inpainting, and interpolation. DNeRV achieves competitive results against the state-of-the-art neural compression approaches and outperforms existing implicit methods on downstream inpainting and interpolation for 960 × 1920 videos.

Poster
Rajhans Singh · Ankita Shukla · Pavan Turaga

[ West Building Exhibit Halls ABC ]

Implicit neural representations (INR) have gained significant popularity for signal and image representation for many end-tasks, such as superresolution, 3D modeling, and more. Most INR architectures rely on sinusoidal positional encoding, which accounts for high-frequency information in data. However, the finite encoding size restricts the model’s representational power. Higher representational power is needed to go from representing a single given image to representing large and diverse datasets. Our approach addresses this gap by representing an image with a polynomial function and eliminates the need for positional encodings. Therefore, to achieve a progressively higher degree of polynomial representation, we use element-wise multiplications between features and affine-transformed coordinate locations after every ReLU layer. The proposed method is evaluated qualitatively and quantitatively on large datasets like ImageNet. The proposed Poly-INR model performs comparably to state-of-the-art generative models without any convolution, normalization, or self-attention layers, and with far fewer trainable parameters. With much fewer training parameters and higher representative power, our approach paves the way for broader adoption of INR models for generative modeling tasks in complex domains. The code is available at https://github.com/Rajhans0/Poly_INR

Poster
Yutaro Shigeto · Masashi Shimbo · Yuya Yoshikawa · Akikazu Takeuchi

[ West Building Exhibit Halls ABC ]

Barlow Twins and VICReg are self-supervised representation learning models that use regularizers to decorrelate features. Although these models are as effective as conventional representation learning models, their training can be computationally demanding if the dimension d of the projected embeddings is high. As the regularizers are defined in terms of individual elements of a cross-correlation or covariance matrix, computing the loss for n samples takes O(n d^2) time. In this paper, we propose a relaxed decorrelating regularizer that can be computed in O(n d log d) time by Fast Fourier Transform. We also propose an inexpensive technique to mitigate undesirable local minima that develop with the relaxation. The proposed regularizer exhibits accuracy comparable to that of existing regularizers in downstream tasks, whereas their training requires less memory and is faster for large d. The source code is available.

Poster
Xuanyao Chen · Zhijian Liu · Haotian Tang · Li Yi · Hang Zhao · Song Han

[ West Building Exhibit Halls ABC ]

High-resolution images enable neural networks to learn richer visual representations. However, this improved performance comes at the cost of growing computational complexity, hindering their usage in latency-sensitive applications. As not all pixels are equal, skipping computations for less-important regions offers a simple and effective measure to reduce the computation. This, however, is hard to be translated into actual speedup for CNNs since it breaks the regularity of the dense convolution workload. In this paper, we introduce SparseViT that revisits activation sparsity for recent window-based vision transformers (ViTs). As window attentions are naturally batched over blocks, actual speedup with window activation pruning becomes possible: i.e., ~50% latency reduction with 60% sparsity. Different layers should be assigned with different pruning ratios due to their diverse sensitivities and computational costs. We introduce sparsity-aware adaptation and apply the evolutionary search to efficiently find the optimal layerwise sparsity configuration within the vast search space. SparseViT achieves speedups of 1.5x, 1.4x, and 1.3x compared to its dense counterpart in monocular 3D object detection, 2D instance segmentation, and 2D semantic segmentation, respectively, with negligible to no loss of accuracy.

Poster
Haram Choi · Jeongmin Lee · Jihoon Yang

[ West Building Exhibit Halls ABC ]

While some studies have proven that Swin Transformer (Swin) with window self-attention (WSA) is suitable for single image super-resolution (SR), the plain WSA ignores the broad regions when reconstructing high-resolution images due to a limited receptive field. In addition, many deep learning SR methods suffer from intensive computations. To address these problems, we introduce the N-Gram context to the low-level vision with Transformers for the first time. We define N-Gram as neighboring local windows in Swin, which differs from text analysis that views N-Gram as consecutive characters or words. N-Grams interact with each other by sliding-WSA, expanding the regions seen to restore degraded pixels. Using the N-Gram context, we propose NGswin, an efficient SR network with SCDP bottleneck taking multi-scale outputs of the hierarchical encoder. Experimental results show that NGswin achieves competitive performance while maintaining an efficient structure when compared with previous leading methods. Moreover, we also improve other Swin-based SR methods with the N-Gram context, thereby building an enhanced model: SwinIR-NG. Our improved SwinIR-NG outperforms the current best lightweight SR approaches and establishes state-of-the-art results. Codes are available at https://github.com/rami0205/NGramSwin.

Poster
Xuran Pan · Tianzhu Ye · Zhuofan Xia · Shiji Song · Gao Huang

[ West Building Exhibit Halls ABC ]

Self-attention mechanism has been a key factor in the recent progress of Vision Transformer (ViT), which enables adaptive feature extraction from global contexts. However, existing self-attention methods either adopt sparse global attention or window attention to reduce the computation complexity, which may compromise the local feature learning or subject to some handcrafted designs. In contrast, local attention, which restricts the receptive field of each query to its own neighboring pixels, enjoys the benefits of both convolution and self-attention, namely local inductive bias and dynamic feature selection. Nevertheless, current local attention modules either use inefficient Im2Col function or rely on specific CUDA kernels that are hard to generalize to devices without CUDA support. In this paper, we propose a novel local attention module, Slide Attention, which leverages common convolution operations to achieve high efficiency, flexibility and generalizability. Specifically, we first re-interpret the column-based Im2Col function from a new row-based perspective and use Depthwise Convolution as an efficient substitution. On this basis, we propose a deformed shifting module based on the re-parameterization technique, which further relaxes the fixed key/value positions to deformed features in the local region. In this way, our module realizes the local attention paradigm in both efficient and flexible …

Poster
Siyuan Wei · Tianzhu Ye · Shen Zhang · Yao Tang · Jiajun Liang

[ West Building Exhibit Halls ABC ]

Although vision transformers (ViTs) have shown promising results in various computer vision tasks recently, their high computational cost limits their practical applications. Previous approaches that prune redundant tokens have demonstrated a good trade-off between performance and computation costs. Nevertheless, errors caused by pruning strategies can lead to significant information loss. Our quantitative experiments reveal that the impact of pruned tokens on performance should be noticeable. To address this issue, we propose a novel joint Token Pruning & Squeezing module (TPS) for compressing vision transformers with higher efficiency. Firstly, TPS adopts pruning to get the reserved and pruned subsets. Secondly, TPS squeezes the information of pruned tokens into partial reserved tokens via the unidirectional nearest-neighbor matching and similarity-oriented fusing steps. Compared to state-of-the-art methods, our approach outperforms them under all token pruning intensities. Especially while shrinking DeiT-tiny&small computational budgets to 35%, it improves the accuracy by 1%-6% compared with baselines on ImageNet classification. The proposed method can accelerate the throughput of DeiT-small beyond DeiT-tiny, while its accuracy surpasses DeiT-tiny by 4.78%. Experiments on various transformers demonstrate the effectiveness of our method, while analysis experiments prove our higher robustness to the errors of the token pruning policy. Code is available at https://github.com/megvii-research/TPS-CVPR2023.

Poster
Baifeng Shi · Trevor Darrell · Xin Wang

[ West Building Exhibit Halls ABC ]

Current attention algorithms (e.g., self-attention) are stimulus-driven and highlight all the salient objects in an image. However, intelligent agents like humans often guide their attention based on the high-level task at hand, focusing only on task-related objects. This ability of task-guided top-down attention provides task-adaptive representation and helps the model generalize to various tasks. In this paper, we consider top-down attention from a classic Analysis-by-Synthesis (AbS) perspective of vision. Prior work indicates a functional equivalence between visual attention and sparse reconstruction; we show that an AbS visual system that optimizes a similar sparse reconstruction objective modulated by a goal-directed top-down signal naturally simulates top-down attention. We further propose Analysis-by-Synthesis Vision Transformer (AbSViT), which is a top-down modulated ViT model that variationally approximates AbS, and achieves controllable top-down attention. For real-world applications, AbSViT consistently improves over baselines on Vision-Language tasks such as VQA and zero-shot retrieval where language guides the top-down attention. AbSViT can also serve as a general backbone, improving performance on classification, semantic segmentation, and model robustness. Project page: https://sites.google.com/view/absvit.

Poster
Markus Frey · Christian F. Doeller · Caswell Barry

[ West Building Exhibit Halls ABC ]

Deep artificial neural networks (DNNs) trained through backpropagation provide effective models of the mammalian visual system, accurately capturing the hierarchy of neural responses through primary visual cortex to inferior temporal cortex (IT). However, the ability of these networks to explain representations in higher cortical areas is relatively lacking and considerably less well researched. For example, DNNs have been less successful as a model of the egocentric to allocentric transformation embodied by circuits in retrosplenial and posterior parietal cortex. We describe a novel scene perception benchmark inspired by a hippocampal dependent task, designed to probe the ability of DNNs to transform scenes viewed from different egocentric perspectives. Using a network architecture inspired by the connectivity between temporal lobe structures and the hippocampus, we demonstrate that DNNs trained using a triplet loss can learn this task. Moreover, by enforcing a factorized latent space, we can split information propagation into “what” and “where” pathways, which we use to reconstruct the input. This allows us to beat the state-of-the-art for unsupervised object segmentation on the CATER and MOVi-A,B,C benchmarks.

Poster
Haoqing Wang · Yehui Tang · Yunhe Wang · Jianyuan Guo · Zhi-Hong Deng · Kai Han

[ West Building Exhibit Halls ABC ]

Masked Image Modeling (MIM) achieves outstanding success in self-supervised representation learning. Unfortunately, MIM models typically have huge computational burden and slow learning process, which is an inevitable obstacle for their industrial applications. Although the lower layers play the key role in MIM, existing MIM models conduct reconstruction task only at the top layer of encoder. The lower layers are not explicitly guided and the interaction among their patches is only used for calculating new activations. Considering the reconstruction task requires non-trivial inter-patch interactions to reason target signals, we apply it to multiple local layers including lower and upper layers. Further, since the multiple layers expect to learn the information of different scales, we design local multi-scale reconstruction, where the lower and upper layers reconstruct fine-scale and coarse-scale supervision signals respectively. This design not only accelerates the representation learning process by explicitly guiding multiple layers, but also facilitates multi-scale semantical understanding to the input. Extensive experiments show that with significantly less pre-training burden, our model achieves comparable or better performance on classification, detection and segmentation tasks than existing MIM models.

Poster
Chenxin Tao · Xizhou Zhu · Weijie Su · Gao Huang · Bin Li · Jie Zhou · Yu Qiao · Xiaogang Wang · Jifeng Dai

[ West Building Exhibit Halls ABC ]

Self-supervised learning (SSL) has delivered superior performance on a variety of downstream vision tasks. Two main-stream SSL frameworks have been proposed, i.e., Instance Discrimination (ID) and Masked Image Modeling (MIM). ID pulls together representations from different views of the same image, while avoiding feature collapse. It lacks spatial sensitivity, which requires modeling the local structure within each image. On the other hand, MIM reconstructs the original content given a masked image. It instead does not have good semantic alignment, which requires projecting semantically similar views into nearby representations. To address this dilemma, we observe that (1) semantic alignment can be achieved by matching different image views with strong augmentations; (2) spatial sensitivity can benefit from predicting dense representations with masked images. Driven by these analysis, we propose Siamese Image Modeling (SiameseIM), which predicts the dense representations of an augmented view, based on another masked view from the same image but with different augmentations. SiameseIM uses a Siamese network with two branches. The online branch encodes the first view, and predicts the second view’s representation according to the relative positions between these two views. The target branch produces the target by encoding the second view. SiameseIM can surpass both ID and …

Poster
Tianhong Li · Huiwen Chang · Shlok Mishra · Han Zhang · Dina Katabi · Dilip Krishnan

[ West Building Exhibit Halls ABC ]

Generative modeling and representation learning are two key tasks in computer vision. However, these models are typically trained independently, which ignores the potential for each task to help the other, and leads to training and model maintenance overheads. In this work, we propose MAsked Generative Encoder (MAGE), the first framework to unify SOTA image generation and self-supervised representation learning. Our key insight is that using variable masking ratios in masked image modeling pre-training can allow generative training (very high masking ratio) and representation learning (lower masking ratio) under the same training framework. Inspired by previous generative models, MAGE uses semantic tokens learned by a vector-quantized GAN at inputs and outputs, combining this with masking. We can further improve the representation by adding a contrastive loss to the encoder output. We extensively evaluate the generation and representation learning capabilities of MAGE. On ImageNet-1K, a single MAGE ViT-L model obtains 9.10 FID in the task of class-unconditional image generation and 78.9% top-1 accuracy for linear probing, achieving state-of-the-art performance in both image generation and representation learning. Code is available at https://github.com/LTH14/mage.

Poster
Yukang Zhang · Hanzi Wang

[ West Building Exhibit Halls ABC ]

For the visible-infrared person re-identification (VIReID) task, one of the major challenges is the modality gaps between visible (VIS) and infrared (IR) images. However, the training samples are usually limited, while the modality gaps are too large, which leads that the existing methods cannot effectively mine diverse cross-modality clues. To handle this limitation, we propose a novel augmentation network in the embedding space, called diverse embedding expansion network (DEEN). The proposed DEEN can effectively generate diverse embeddings to learn the informative feature representations and reduce the modality discrepancy between the VIS and IR images. Moreover, the VIReID model may be seriously affected by drastic illumination changes, while all the existing VIReID datasets are captured under sufficient illumination without significant light changes. Thus, we provide a low-light cross-modality (LLCM) dataset, which contains 46,767 bounding boxes of 1,064 identities captured by 9 RGB/IR cameras. Extensive experiments on the SYSU-MM01, RegDB and LLCM datasets show the superiority of the proposed DEEN over several other state-of-the-art methods. The code and dataset are released at: https://github.com/ZYK100/LLCM

Poster
Suhang Ye · Yingyi Zhang · Jie Hu · Liujuan Cao · Shengchuan Zhang · Lei Shen · Jun Wang · Shouhong Ding · Rongrong Ji

[ West Building Exhibit Halls ABC ]

In the field of human pose estimation, regression-based methods have been dominated in terms of speed, while heatmap-based methods are far ahead in terms of performance. How to take advantage of both schemes remains a challenging problem. In this paper, we propose a novel human pose estimation framework termed DistilPose, which bridges the gaps between heatmap-based and regression-based methods. Specifically, DistilPose maximizes the transfer of knowledge from the teacher model (heatmap-based) to the student model (regression-based) through Token-distilling Encoder (TDE) and Simulated Heatmaps. TDE aligns the feature spaces of heatmap-based and regression-based models by introducing tokenization, while Simulated Heatmaps transfer explicit guidance (distribution and confidence) from teacher heatmaps into student models. Extensive experiments show that the proposed DistilPose can significantly improve the performance of the regression-based models while maintaining efficiency. Specifically, on the MSCOCO validation dataset, DistilPose-S obtains 71.6% mAP with 5.36M parameter, 2.38 GFLOPs and 40.2 FPS, which saves 12.95x, 7.16x computational cost and is 4.9x faster than its teacher model with only 0.9 points performance drop. Furthermore, DistilPose-L obtains 74.4% mAP on MSCOCO validation dataset, achieving a new state-of-the-art among predominant regression-based models.

Poster
Hao Tang · Zhenyu Zhang · Humphrey Shi · Bo Li · Ling Shao · Nicu Sebe · Radu Timofte · Luc Van Gool

[ West Building Exhibit Halls ABC ]

We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations in an end-to-end fashion for the challenging graph-constrained house generation task. The proposed graph-Transformer-based generator includes a novel graph Transformer encoder that combines graph convolutions and self-attentions in a Transformer to model both local and global interactions across connected and non-connected graph nodes. Specifically, the proposed connected node attention (CNA) and non-connected node attention (NNA) aim to capture the global relations across connected nodes and non-connected nodes in the input graph, respectively. The proposed graph modeling block (GMB) aims to exploit local vertex interactions based on a house layout topology. Moreover, we propose a new node classification-based discriminator to preserve the high-level semantic and discriminative node features for different house components. Finally, we propose a novel graph-based cycle-consistency loss that aims at maintaining the relative spatial relationships between ground truth and predicted graphs. Experiments on two challenging graph-constrained house generation tasks (i.e., house layout and roof generation) with two public datasets demonstrate the effectiveness of GTGAN in terms of objective quantitative scores and subjective visual realism. New state-of-the-art results are established by large margins on both tasks.

Poster
Mang Tik Chiu · Xuaner Zhang · Zijun Wei · Yuqian Zhou · Eli Shechtman · Connelly Barnes · Zhe Lin · Florian Kainz · Sohrab Amirghodsi · Humphrey Shi

[ West Building Exhibit Halls ABC ]

Wires and powerlines are common visual distractions that often undermine the aesthetics of photographs. The manual process of precisely segmenting and removing them is extremely tedious and may take up to hours, especially on high-resolution photos where wires may span the entire space. In this paper, we present an automatic wire clean-up system that eases the process of wire segmentation and removal/inpainting to within a few seconds. We observe several unique challenges: wires are thin, lengthy, and sparse. These are rare properties of subjects that common segmentation tasks cannot handle, especially in high-resolution images. We thus propose a two-stage method that leverages both global and local context to accurately segment wires in high-resolution images efficiently, and a tile-based inpainting strategy to remove the wires given our predicted segmentation masks. We also introduce the first wire segmentation benchmark dataset, WireSegHR. Finally, we demonstrate quantitatively and qualitatively that our wire clean-up system enables fully automated wire removal for great generalization to various wire appearances.

Poster
Adnan Firoze · Cameron Wingren · Raymond A. Yeh · Bedrich Benes · Daniel Aliaga

[ West Building Exhibit Halls ABC ]

We present a novel approach to perform instance segmentation, and counting, for densely packed self-similar trees using a top-view RGB image sequence. We propose a solution that leverages pixel content, shape, and self-occlusion. First, we perform an initial over-segmentation of the image sequence and aggregate structural characteristics into a contour graph with temporal information incorporated. Second, using a graph convolutional network and its inherent local messaging passing abilities, we merge adjacent tree crown patches into a final set of tree crowns. Per various studies and comparisons, our method is superior to all prior methods and results in high-accuracy instance segmentation and counting, despite the trees being tightly packed. Finally, we provide various forest image sequence datasets suitable for subsequent benchmarking and evaluation captured at different altitudes and leaf conditions.

Poster
Jungin Park · Jiyoung Lee · Kwanghoon Sohn

[ West Building Exhibit Halls ABC ]

In this paper, we efficiently transfer the surpassing representation power of the vision foundation models, such as ViT and Swin, for video understanding with only a few trainable parameters. Previous adaptation methods have simultaneously considered spatial and temporal modeling with a unified learnable module but still suffered from fully leveraging the representative capabilities of image transformers. We argue that the popular dual-path (two-stream) architecture in video models can mitigate this problem. We propose a novel DUALPATH adaptation separated into spatial and temporal adaptation paths, where a lightweight bottleneck adapter is employed in each transformer block. Especially for temporal dynamic modeling, we incorporate consecutive frames into a grid-like frameset to precisely imitate vision transformers’ capability that extrapolates relationships between tokens. In addition, we extensively investigate the multiple baselines from a unified perspective in video understanding and compare them with DUALPATH. Experimental results on four action recognition benchmarks prove that pretrained image transformers with DUALPATH can be effectively generalized beyond the data domain.

Poster
AJ Piergiovanni · Weicheng Kuo · Anelia Angelova

[ West Building Exhibit Halls ABC ]

We present a simple approach which can turn a ViT encoder into an efficient video model, which can seamlessly work with both image and video inputs. By sparsely sampling the inputs, the model is able to do training and inference from both inputs. The model is easily scalable and can be adapted to large-scale pre-trained ViTs without requiring full finetuning. The model achieves SOTA results.

Poster
Heng Zhang · Daqing Liu · Qi Zheng · Bing Su

[ West Building Exhibit Halls ABC ]

A meaningful video is semantically coherent and changes smoothly. However, most existing fine-grained video representation learning methods learn frame-wise features by aligning frames across videos or exploring relevance between multiple views, neglecting the inherent dynamic process of each video. In this paper, we propose to learn video representations by modeling Video as Stochastic Processes (VSP) via a novel process-based contrastive learning framework, which aims to discriminate between video processes and simultaneously capture the temporal dynamics in the processes. Specifically, we enforce the embeddings of the frame sequence of interest to approximate a goal-oriented stochastic process, i.e., Brownian bridge, in the latent space via a process-based contrastive loss. To construct the Brownian bridge, we adapt specialized sampling strategies under different annotations for both self-supervised and weakly-supervised learning. Experimental results on four datasets show that VSP stands as a state-of-the-art method for various video understanding tasks, including phase progression, phase classification and frame retrieval. Code is available at ‘https://github.com/hengRUC/VSP’.

Poster
Xinyu Sun · Peihao Chen · Liangwei Chen · Changhao Li · Thomas H. Li · Mingkui Tan · Chuang Gan

[ West Building Exhibit Halls ABC ]

How to learn discriminative video representation from unlabeled videos is challenging but crucial for video analysis. The latest attempts seek to learn a representation model by predicting the appearance contents in the masked regions. However, simply masking and recovering appearance contents may not be sufficient to model temporal clues as the appearance contents can be easily reconstructed from a single frame. To overcome this limitation, we present Masked Motion Encoding (MME), a new pre-training paradigm that reconstructs both appearance and motion information to explore temporal clues. In MME, we focus on addressing two critical challenges to improve the representation performance: 1) how to well represent the possible long-term motion across multiple frames; and 2) how to obtain fine-grained temporal clues from sparsely sampled videos. Motivated by the fact that human is able to recognize an action by tracking objects’ position changes and shape changes, we propose to reconstruct a motion trajectory that represents these two kinds of change in the masked regions. Besides, given the sparse video input, we enforce the model to reconstruct dense motion trajectories in both spatial and temporal dimensions. Pre-trained with our MME paradigm, the model is able to anticipate long-term and fine-grained motion details. Code …

Poster
Yurong Zhang · Liulei Li · Wenguan Wang · Rong Xie · Li Song · Wenjun Zhang

[ West Building Exhibit Halls ABC ]

Current top-leading solutions for video object segmentation (VOS) typically follow a matching-based regime: for each query frame, the segmentation mask is inferred according to its correspondence to previously processed and the first annotated frames. They simply exploit the supervisory signals from the groundtruth masks for learning mask prediction only, without posing any constraint on the space-time correspondence matching, which, however, is the fundamental building block of such regime. To alleviate this crucial yet commonly ignored issue, we devise a correspondence-aware training framework, which boosts matching-based VOS solutions by explicitly encouraging robust correspondence matching during network learning. Through comprehensively exploring the intrinsic coherence in videos on pixel and object levels, our algorithm reinforces the standard, fully supervised training of mask segmentation with label-free, contrastive correspondence learning. Without neither requiring extra annotation cost during training, nor causing speed delay during deployment, nor incurring architectural modification, our algorithm provides solid performance gains on four widely used benchmarks, i.e., DAVIS2016&2017, and YouTube-VOS2018&2019, on the top of famous matching-based VOS solutions. Our implementation will be released.

Poster
Kun Yan · Xiao Li · Fangyun Wei · Jinglu Wang · Chenbin Zhang · Ping Wang · Yan Lu

[ West Building Exhibit Halls ABC ]

Previous works on video object segmentation (VOS) are trained on densely annotated videos. Nevertheless, acquiring annotations in pixel level is expensive and time-consuming. In this work, we demonstrate the feasibility of training a satisfactory VOS model on sparsely annotated videos--we merely require two labeled frames per training video while the performance is sustained. We term this novel training paradigm as two-shot video object segmentation, or two-shot VOS for short. The underlying idea is to generate pseudo labels for unlabeled frames during training and to optimize the model on the combination of labeled and pseudo-labeled data. Our approach is extremely simple and can be applied to a majority of existing frameworks. We first pre-train a VOS model on sparsely annotated videos in a semi-supervised manner, with the first frame always being a labeled one. Then, we adopt the pre-trained VOS model to generate pseudo labels for all unlabeled frames, which are subsequently stored in a pseudo-label bank. Finally, we retrain a VOS model on both labeled and pseudo-labeled data without any restrictions on the first frame. For the first time, we present a general way to train VOS models on two-shot VOS datasets. By using 7.3% and 2.9% labeled data of …

Poster
Junke Wang · Dongdong Chen · Zuxuan Wu · Chong Luo · Chuanxin Tang · Xiyang Dai · Yucheng Zhao · Yujia Xie · Lu Yuan · Yu-Gang Jiang

[ West Building Exhibit Halls ABC ]

Exploring dense matching between the current frame and past frames for long-range context modeling, memory-based methods have demonstrated impressive results in video object segmentation (VOS) recently. Nevertheless, due to the lack of instance understanding ability, the above approaches are oftentimes brittle to large appearance variations or viewpoint changes resulted from the movement of objects and cameras. In this paper, we argue that instance understanding matters in VOS, and integrating it with memory-based matching can enjoy the synergy, which is intuitively sensible from the definition of VOS task, i.e., identifying and segmenting object instances within the video. Towards this goal, we present a two-branch network for VOS, where the query-based instance segmentation (IS) branch delves into the instance details of the current frame and the VOS branch performs spatial-temporal matching with the memory bank. We employ the well-learned object queries from IS branch to inject instance-specific information into the query key, with which the instance-augmented matching is further performed. In addition, we introduce a multi-path fusion block to effectively combine the memory readout with multi-scale features from the instance segmentation decoder, which incorporates high-resolution instance-aware features to produce final segmentation results. Our method achieves state-of-the-art performance on DAVIS 2016/2017 val (92.6% …

Poster
Rui Li · Dong Liu

[ West Building Exhibit Halls ABC ]

In low-level video analyses, effective representations are important to derive the correspondences between video frames. These representations have been learned in a self-supervised fashion from unlabeled images/videos, using carefully designed pretext tasks in some recent studies. However, the previous work concentrates on either spatial-discriminative features or temporal-repetitive features, with little attention to the synergy between spatial and temporal cues. To address this issue, we propose a novel spatial-then-temporal self-supervised learning method. Specifically, we firstly extract spatial features from unlabeled images via contrastive learning, and secondly enhance the features by exploiting the temporal cues in unlabeled videos via reconstructive learning. In the second step, we design a global correlation distillation loss to ensure the learning not to forget the spatial cues, and we design a local correlation distillation loss to combat the temporal discontinuity that harms the reconstruction. The proposed method outperforms the state-of-the-art self-supervised methods, as established by the experimental results on a series of correspondence-based video analysis tasks. Also, we performed ablation studies to verify the effectiveness of the two-step design as well as the distillation losses.

Poster
Yogesh Kumar · Anand Mishra

[ West Building Exhibit Halls ABC ]

Interpreting visual relationships is a core aspect of comprehensive video understanding. Given a query visual relationship as and a test video, our objective is to localize the subject and object that are connected via the predicate. Given modern visio-lingual understanding capabilities, solving this problem is achievable, provided that there are large-scale annotated training examples available. However, annotating for every combination of subject, object, and predicate is cumbersome, expensive, and possibly infeasible. Therefore, there is a need for models that can learn to spatially and temporally localize subjects and objects that are connected via an unseen predicate using only a few support set videos sharing the common predicate. We address this challenging problem, referred to as few-shot referring relationships in videos for the first time. To this end, we pose the problem as a minimization of an objective function defined over a T-partite random field. Here, the vertices of the random field correspond to candidate bounding boxes for the subject and object, and T represents the number of frames in the test video. This objective function is composed of frame level and visual relationship similarity potentials. To learn these potentials, we use a relation network that takes query-conditioned translational relationship embedding …

Poster
Yan-Bo Lin · Yi-Lin Sung · Jie Lei · Mohit Bansal · Gedas Bertasius

[ West Building Exhibit Halls ABC ]

Vision transformers (ViTs) have achieved impressive results on various computer vision tasks in the last several years. In this work, we study the capability of frozen ViTs, pretrained only on visual data, to generalize to audio-visual data without finetuning any of its original parameters. To do so, we propose a latent audio-visual hybrid (LAVISH) adapter that adapts pretrained ViTs to audio-visual tasks by injecting a small number of trainable parameters into every layer of a frozen ViT. To efficiently fuse visual and audio cues, our LAVISH adapter uses a small set of latent tokens, which form an attention bottleneck, thus, eliminating the quadratic cost of standard cross-attention. Compared to the existing modality-specific audio-visual methods, our approach achieves competitive or even better performance on various audio-visual tasks while using fewer tunable parameters and without relying on costly audio pretraining or external audio encoders. Our code is available at https://genjib.github.io/project_page/LAVISH/

Poster
Zihui Xue · Yale Song · Kristen Grauman · Lorenzo Torresani

[ West Building Exhibit Halls ABC ]

Different video understanding tasks are typically treated in isolation, and even with distinct types of curated data (e.g., classifying sports in one dataset, tracking animals in another). However, in wearable cameras, the immersive egocentric perspective of a person engaging with the world around them presents an interconnected web of video understanding tasks---hand-object manipulations, navigation in the space, or human-human interactions---that unfold continuously, driven by the person’s goals. We argue that this calls for a much more unified approach. We propose EgoTask Translation (EgoT2), which takes a collection of models optimized on separate tasks and learns to translate their outputs for improved performance on any or all of them at once. Unlike traditional transfer or multi-task learning, EgoT2’s “flipped design” entails separate task-specific backbones and a task translator shared across all tasks, which captures synergies between even heterogeneous tasks and mitigates task competition. Demonstrating our model on a wide array of video tasks from Ego4D, we show its advantages over existing transfer paradigms and achieve top-ranked results on four of the Ego4D 2022 benchmark challenges.

Poster
Sicheng Yang · Zhiyong Wu · Minglei Li · Zhensong Zhang · Lei Hao · Weihong Bao · Haolin Zhuang

[ West Building Exhibit Halls ABC ]

Speech-driven gesture generation is highly challenging due to the random jitters of human motion. In addition, there is an inherent asynchronous relationship between human speech and gestures. To tackle these challenges, we introduce a novel quantization-based and phase-guided motion matching framework. Specifically, we first present a gesture VQ-VAE module to learn a codebook to summarize meaningful gesture units. With each code representing a unique gesture, random jittering problems are alleviated effectively. We then use Levenshtein distance to align diverse gestures with different speech. Levenshtein distance based on audio quantization as a similarity metric of corresponding speech of gestures helps match more appropriate gestures with speech, and solves the alignment problem of speech and gestures well. Moreover, we introduce phase to guide the optimal gesture matching based on the semantics of context or rhythm of audio. Phase guides when text-based or speech-based gestures should be performed to make the generated gestures more natural. Extensive experiments show that our method outperforms recent approaches on speech-driven gesture generation. Our code, database, pre-trained models and demos are available at https://github.com/YoungSeng/QPGesture.

Poster
Mingyang Sun · Mengchen Zhao · Yaqing Hou · Minglei Li · Huang Xu · Songcen Xu · Jianye Hao

[ West Building Exhibit Halls ABC ]

There is a growing demand of automatically synthesizing co-speech gestures for virtual characters. However, it remains a challenge due to the complex relationship between input speeches and target gestures. Most existing works focus on predicting the next gesture that fits the data best, however, such methods are myopic and lack the ability to plan for future gestures. In this paper, we propose a novel reinforcement learning (RL) framework called RACER to generate sequences of gestures that maximize the overall satisfactory. RACER employs a vector quantized variational autoencoder to learn compact representations of gestures and a GPT-based policy architecture to generate coherent sequence of gestures autoregressively. In particular, we propose a contrastive pre-training approach to calculate the rewards, which integrates contextual information into action evaluation and successfully captures the complex relationships between multi-modal speech-gesture data. Experimental results show that our method significantly outperforms existing baselines in terms of both objective metrics and subjective human judgements. Demos can be found at https://github.com/RLracer/RACER.git.

Poster
Ishan Rajendrakumar Dave · Mamshad Nayeem Rizve · Chen Chen · Mubarak Shah

[ West Building Exhibit Halls ABC ]

Semi-Supervised Learning can be more beneficial for the video domain compared to images because of its higher annotation cost and dimensionality. Besides, any video understanding task requires reasoning over both spatial and temporal dimensions. In order to learn both the static and motion related features for the semi-supervised action recognition task, existing methods rely on hard input inductive biases like using two-modalities (RGB and Optical-flow) or two-stream of different playback rates. Instead of utilizing unlabeled videos through diverse input streams, we rely on self-supervised video representations, particularly, we utilize temporally-invariant and temporally-distinctive representations. We observe that these representations complement each other depending on the nature of the action. Based on this observation, we propose a student-teacher semi-supervised learning framework, TimeBalance, where we distill the knowledge from a temporally-invariant and a temporally-distinctive teacher. Depending on the nature of the unlabeled video, we dynamically combine the knowledge of these two teachers based on a novel temporal similarity-based reweighting scheme. Our method achieves state-of-the-art performance on three action recognition benchmarks: UCF101, HMDB51, and Kinetics400. Code: https://github.com/DAVEISHAN/TimeBalance.

Poster
Xingyi Zhou · Anurag Arnab · Chen Sun · Cordelia Schmid

[ West Building Exhibit Halls ABC ]

Current state-of-the-art video models process a video clip as a long sequence of spatio-temporal tokens. However, they do not explicitly model objects, their interactions across the video, and instead process all the tokens in the video. In this paper, we investigate how we can use knowledge of objects to design better video models, namely to process fewer tokens and to improve recognition accuracy. This is in contrast to prior works which either drop tokens at the cost of accuracy, or increase accuracy whilst also increasing the computation required. First, we propose an object-guided token sampling strategy that enables us to retain a small fraction of the input tokens with minimal impact on accuracy. And second, we propose an object-aware attention module that enriches our feature representation with object information and improves overall accuracy. Our resulting framework achieves better performance when using fewer tokens than strong baselines. In particular, we match our baseline with 30%, 40%, and 60% of the input tokens on SomethingElse, Something-something v2, and Epic-Kitchens, respectively. When we use our model to process the same number of tokens as our baseline, we improve by 0.6 to 4.2 points on these datasets.

Poster
Lilang Lin · Jiahang Zhang · Jiaying Liu

[ West Building Exhibit Halls ABC ]

The self-supervised pretraining paradigm has achieved great success in skeleton-based action recognition. However, these methods treat the motion and static parts equally, and lack an adaptive design for different parts, which has a negative impact on the accuracy of action recognition. To realize the adaptive action modeling of both parts, we propose an Actionlet-Dependent Contrastive Learning method (ActCLR). The actionlet, defined as the discriminative subset of the human skeleton, effectively decomposes motion regions for better action modeling. In detail, by contrasting with the static anchor without motion, we extract the motion region of the skeleton data, which serves as the actionlet, in an unsupervised manner. Then, centering on actionlet, a motion-adaptive data transformation method is built. Different data transformations are applied to actionlet and non-actionlet regions to introduce more diversity while maintaining their own characteristics. Meanwhile, we propose a semantic-aware feature pooling method to build feature representations among motion and static regions in a distinguished manner. Extensive experiments on NTU RGB+D and PKUMMD show that the proposed method achieves remarkable action recognition performance. More visualization and quantitative experiments demonstrate the effectiveness of our method.

Poster
Pilhyeon Lee · Taeoh Kim · Minho Shim · Dongyoon Wee · Hyeran Byun

[ West Building Exhibit Halls ABC ]

Temporal action detection aims to predict the time intervals and the classes of action instances in the video. Despite the promising performance, existing two-stream models exhibit slow inference speed due to their reliance on computationally expensive optical flow. In this paper, we introduce a decomposed cross-modal distillation framework to build a strong RGB-based detector by transferring knowledge of the motion modality. Specifically, instead of direct distillation, we propose to separately learn RGB and motion representations, which are in turn combined to perform action localization. The dual-branch design and the asymmetric training objectives enable effective motion knowledge transfer while preserving RGB information intact. In addition, we introduce a local attentive fusion to better exploit the multimodal complementarity. It is designed to preserve the local discriminability of the features that is important for action localization. Extensive experiments on the benchmarks verify the effectiveness of the proposed method in enhancing RGB-based action detectors. Notably, our framework is agnostic to backbones and detection heads, bringing consistent gains across different model combinations.

Poster
Beatrice van Amsterdam · Abdolrahim Kadkhodamohammadi · Imanol Luengo · Danail Stoyanov

[ West Building Exhibit Halls ABC ]

Most state-of-the-art methods for action segmentation are based on single input modalities or naïve fusion of multiple data sources. However, effective fusion of complementary information can potentially strengthen segmentation models and make them more robust to sensor noise and more accurate with smaller training datasets. In order to improve multimodal representation learning for action segmentation, we propose to disentangle hidden features of a multi-stream segmentation model into modality-shared components, containing common information across data sources, and private components; we then use an attention bottleneck to capture long-range temporal dependencies in the data while preserving disentanglement in consecutive processing layers. Evaluation on 50salads, Breakfast and RARP45 datasets shows that our multimodal approach outperforms different data fusion baselines on both multiview and multimodal data sources, obtaining competitive or better results compared with the state-of-the-art. Our model is also more robust to additive sensor noise and can achieve performance on par with strong video baselines even with less training data.

Poster
Huan Ren · Wenfei Yang · Tianzhu Zhang · Yongdong Zhang

[ West Building Exhibit Halls ABC ]

Weakly-supervised temporal action localization aims to localize and recognize actions in untrimmed videos with only video-level category labels during training. Without instance-level annotations, most existing methods follow the Segment-based Multiple Instance Learning (S-MIL) framework, where the predictions of segments are supervised by the labels of videos. However, the objective for acquiring segment-level scores during training is not consistent with the target for acquiring proposal-level scores during testing, leading to suboptimal results. To deal with this problem, we propose a novel Proposal-based Multiple Instance Learning (P-MIL) framework that directly classifies the candidate proposals in both the training and testing stages, which includes three key designs: 1) a surrounding contrastive feature extraction module to suppress the discriminative short proposals by considering the surrounding contrastive information, 2) a proposal completeness evaluation module to inhibit the low-quality proposals with the guidance of the completeness pseudo labels, and 3) an instance-level rank consistency loss to achieve robust detection by leveraging the complementarity of RGB and FLOW modalities. Extensive experimental results on two challenging benchmarks including THUMOS14 and ActivityNet demonstrate the superior performance of our method. Our code is available at github.com/OpenSpaceAI/CVPR2023_P-MIL.

Poster
Shiyi Zhang · Wenxun Dai · Sujia Wang · Xiangwei Shen · Jiwen Lu · Jie Zhou · Yansong Tang

[ West Building Exhibit Halls ABC ]

Action quality assessment (AQA) has become an emerging topic since it can be extensively applied in numerous scenarios. However, most existing methods and datasets focus on single-person short-sequence scenes, hindering the application of AQA in more complex situations. To address this issue, we construct a new multi-person long-form video dataset for action quality assessment named LOGO. Distinguished in scenario complexity, our dataset contains 200 videos from 26 artistic swimming events with 8 athletes in each sample along with an average duration of 204.2 seconds. As for richness in annotations, LOGO includes formation labels to depict group information of multiple athletes and detailed annotations on action procedures. Furthermore, we propose a simple yet effective method to model relations among athletes and reason about the potential temporal logic in long-form videos. Specifically, we design a group-aware attention module, which can be easily plugged into existing AQA methods, to enrich the clip-wise representations based on contextual group information. To benchmark LOGO, we systematically conduct investigations on the performance of several popular methods in AQA and action segmentation. The results reveal the challenges our dataset brings. Extensive experiments also show that our approach achieves state-of-the-art on the LOGO dataset. The dataset and code will …

Poster
Toby Perrett · Saptarshi Sinha · Tilo Burghardt · Majid Mirmehdi · Dima Damen

[ West Building Exhibit Halls ABC ]

This paper presents an investigation into long-tail video recognition. We demonstrate that, unlike naturally-collected video datasets and existing long-tail image benchmarks, current video benchmarks fall short on multiple long-tailed properties. Most critically, they lack few-shot classes in their tails. In response, we propose new video benchmarks that better assess long-tail recognition, by sampling subsets from two datasets: SSv2 and VideoLT. We then propose a method, Long-Tail Mixed Reconstruction (LMR), which reduces overfitting to instances from few-shot classes by reconstructing them as weighted combinations of samples from head classes. LMR then employs label mixing to learn robust decision boundaries. It achieves state-of-the-art average class accuracy on EPIC-KITCHENS and the proposed SSv2-LT and VideoLT-LT. Benchmarks and code at: github.com/tobyperrett/lmr

Poster
Yuexi Du · Ziyang Chen · Justin Salamon · Bryan Russell · Andrew Owens

[ West Building Exhibit Halls ABC ]

The sound effects that designers add to videos are designed to convey a particular artistic effect and, thus, may be quite different from a scene’s true sound. Inspired by the challenges of creating a soundtrack for a video that differs from its true sound, but that nonetheless matches the actions occurring on screen, we propose the problem of conditional Foley. We present the following contributions to address this problem. First, we propose a pretext task for training our model to predict sound for an input video clip using a conditional audio-visual clip sampled from another time within the same source video. Second, we propose a model for generating a soundtrack for a silent input video, given a user-supplied example that specifies what the video should “sound like”. We show through human studies and automated evaluation metrics that our model successfully generates sound from video, while varying its output according to the content of a supplied example.

Poster
Sixun Dong · Huazhang Hu · Dongze Lian · Weixin Luo · Yicheng Qian · Shenghua Gao

[ West Building Exhibit Halls ABC ]

Sequential video understanding, as an emerging video understanding task, has driven lots of researchers’ attention because of its goal-oriented nature. This paper studies weakly supervised sequential video understanding where the accurate time-stamp level text-video alignment is not provided. We solve this task by borrowing ideas from CLIP. Specifically, we use a transformer to aggregate frame-level features for video representation and use a pre-trained text encoder to encode the texts corresponding to each action and the whole video, respectively. To model the correspondence between text and video, we propose a multiple granularity loss, where the video-paragraph contrastive loss enforces matching between the whole video and the complete script, and a fine-grained frame-sentence contrastive loss enforces the matching between each action and its description. As the frame-sentence correspondence is not available, we propose to use the fact that video actions happen sequentially in the temporal domain to generate pseudo frame-sentence correspondence and supervise the network training with the pseudo labels. Extensive experiments on video sequence verification and text-to-video matching show that our method outperforms baselines by a large margin, which validates the effectiveness of our proposed approach. Code is available at https://github.com/svip-lab/WeakSVR.

Poster
Xiang Fang · Daizong Liu · Pan Zhou · Guoshun Nan

[ West Building Exhibit Halls ABC ]

Given an untrimmed video, temporal sentence grounding (TSG) aims to locate a target moment semantically according to a sentence query. Although previous respectable works have made decent success, they only focus on high-level visual features extracted from the consecutive decoded frames and fail to handle the compressed videos for query modelling, suffering from insufficient representation capability and significant computational complexity during training and testing. In this paper, we pose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input. To handle the raw video bit-stream input, we propose a novel Three-branch Compressed-domain Spatial-temporal Fusion (TCSF) framework, which extracts and aggregates three kinds of low-level visual features (I-frame, motion vector and residual features) for effective and efficient grounding. Particularly, instead of encoding the whole decoded frames like previous works, we capture the appearance representation by only learning the I-frame feature to reduce delay or latency. Besides, we explore the motion information not only by learning the motion vector feature, but also by exploring the relations of neighboring frames via the residual feature. In this way, a three-branch spatial-temporal attention layer with an adaptive motion-appearance fusion module is further designed to extract and aggregate …

Poster
Paul Voigtlaender · Soravit Changpinyo · Jordi Pont-Tuset · Radu Soricut · Vittorio Ferrari

[ West Building Exhibit Halls ABC ]

We propose Video Localized Narratives, a new form of multimodal video annotations connecting vision and language. In the original Localized Narratives, annotators speak and move their mouse simultaneously on an image, thus grounding each word with a mouse trace segment. However, this is challenging on a video. Our new protocol empowers annotators to tell the story of a video with Localized Narratives, capturing even complex events involving multiple actors interacting with each other and with several passive objects. We annotated 20k videos of the OVIS, UVO, and Oops datasets, totalling 1.7M words. Based on this data, we also construct new benchmarks for the video narrative grounding and video question answering tasks, and provide reference results from strong baseline models. Our annotations are available at https://google.github.io/video-localized-narratives/.

Poster
Peng Jin · Jinfa Huang · Pengfei Xiong · Shangxuan Tian · Chang Liu · Xiangyang Ji · Li Yuan · Jie Chen

[ West Building Exhibit Halls ABC ]

Contrastive learning-based video-language representation learning approaches, e.g., CLIP, have achieved outstanding performance, which pursue semantic interaction upon pre-defined video-text pairs. To clarify this coarse-grained global interaction and move a step further, we have to encounter challenging shell-breaking interactions for fine-grained cross-modal learning. In this paper, we creatively model video-text as game players with multivariate cooperative game theory to wisely handle the uncertainty during fine-grained semantic interaction with diverse granularity, flexible combination, and vague intensity. Concretely, we propose Hierarchical Banzhaf Interaction (HBI) to value possible correspondence between video frames and text words for sensitive and explainable cross-modal contrast. To efficiently realize the cooperative game of multiple video frames and multiple text words, the proposed method clusters the original video frames (text words) and computes the Banzhaf Interaction between the merged tokens. By stacking token merge modules, we achieve cooperative games at different semantic levels. Extensive experiments on commonly used text-video retrieval and video-question answering benchmarks with superior performances justify the efficacy of our HBI. More encouragingly, it can also serve as a visualization tool to promote the understanding of cross-modal interaction, which may have a far-reaching impact on the community. Project page is available at https://jpthu17.github.io/HBI/.

Poster
Jiahao Zhang · Anoop Cherian · Yanbin Liu · Yizhak Ben-Shabat · Cristian Rodriguez · Stephen Gould

[ West Building Exhibit Halls ABC ]

Multimodal alignment facilitates the retrieval of instances from one modality when queried using another. In this paper, we consider a novel setting where such an alignment is between (i) instruction steps that are depicted as assembly diagrams (commonly seen in Ikea assembly manuals) and (ii) video segments from in-the-wild videos; these videos comprising an enactment of the assembly actions in the real world. To learn this alignment, we introduce a novel supervised contrastive learning method that learns to align videos with the subtle details in the assembly diagrams, guided by a set of novel losses. To study this problem and demonstrate the effectiveness of our method, we introduce a novel dataset: IAW---for Ikea assembly in the wild---consisting of 183 hours of videos from diverse furniture assembly collections and nearly 8,300 illustrations from their associated instruction manuals and annotated for their ground truth alignments. We define two tasks on this dataset: First, nearest neighbor retrieval between video segments and illustrations, and, second, alignment of instruction steps and the segments for each video. Extensive experiments on IAW demonstrate superior performances of our approach against alternatives.

Poster
Tanzila Rahman · Hsin-Ying Lee · Jian Ren · Sergey Tulyakov · Shweta Mahajan · Leonid Sigal

[ West Building Exhibit Halls ABC ]

There has been a recent explosion of impressive generative models that can produce high quality images (or videos) conditioned on text descriptions. However, all such approaches rely on conditional sentences that contain unambiguous descriptions of scenes and main actors in them. Therefore employing such models for more complex task of story visualization, where naturally references and co-references exist, and one requires to reason about when to maintain consistency of actors and backgrounds across frames/scenes, and when not to, based on story progression, remains a challenge. In this work, we address the aforementioned challenges and propose a novel autoregressive diffusion-based framework with a visual memory module that implicitly captures the actor and background context across the generated frames. Sentence-conditioned soft attention over the memories enables effective reference resolution and learns to maintain scene and actor consistency when needed. To validate the effectiveness of our approach, we extend the MUGEN dataset and introduce additional characters, backgrounds and referencing in multi-sentence storylines. Our experiments for story generation on the MUGEN, the PororoSV and the FlintstonesSV dataset show that our method not only outperforms prior state-of-the-art in generating frames with high visual quality, which are consistent with the story, but also models appropriate correspondences …

Poster
Piyush Bagad · Makarand Tapaswi · Cees G. M. Snoek

[ West Building Exhibit Halls ABC ]

Modelling and understanding time remains a challenge in contemporary video understanding models. With language emerging as a key driver towards powerful generalization, it is imperative for foundational video-language models to have a sense of time. In this paper, we consider a specific aspect of temporal understanding: consistency of time order as elicited by before/after relations. We establish that seven existing video-language models struggle to understand even such simple temporal relations. We then question whether it is feasible to equip these foundational models with temporal awareness without re-training them from scratch. Towards this, we propose a temporal adaptation recipe on top of one such model, VideoCLIP, based on post-pretraining on a small amount of video-text data. We conduct a zero-shot evaluation of the adapted models on six datasets for three downstream tasks which require varying degrees of time awareness. We observe encouraging performance gains especially when the task needs higher time awareness. Our work serves as a first step towards probing and instilling a sense of time in existing video-language models without the need for data and compute-intense training from scratch.

Poster
Dhruv Srivastava · Aditya Kumar Singh · Makarand Tapaswi

[ West Building Exhibit Halls ABC ]

Movie story analysis requires understanding characters’ emotions and mental states. Towards this goal, we formulate emotion understanding as predicting a diverse and multi-label set of emotions at the level of a movie scene and for each character. We propose EmoTx, a multimodal Transformer-based architecture that ingests videos, multiple characters, and dialog utterances to make joint predictions. By leveraging annotations from the MovieGraphs dataset, we aim to predict classic emotions (e.g. happy, angry) and other mental states (e.g. honest, helpful). We conduct experiments on the most frequently occurring 10 and 25 labels, and a mapping that clusters 181 labels to 26. Ablation studies and comparison against adapted state-of-the-art emotion recognition approaches shows the effectiveness of EmoTx. Analyzing EmoTx’s self-attention scores reveals that expressive emotions often look at character tokens while other mental states rely on video and dialog cues.

Poster
Lianyu Hu · Liqing Gao · Zekang Liu · Wei Feng

[ West Building Exhibit Halls ABC ]

Human body trajectories are a salient cue to identify actions in video. Such body trajectories are mainly conveyed by hands and face across consecutive frames in sign language. However, current methods in continuous sign language recognition(CSLR) usually process frames independently to capture frame-wise features, thus failing to capture cross-frame trajectories to effectively identify a sign. To handle this limitation, we propose correlation network (CorrNet) to explicitly leverage body trajectories across frames to identify signs. In specific, an identification module is first presented to emphasize informative regions in each frame that are beneficial in expressing a sign. A correlation module is then proposed to dynamically compute correlation maps between current frame and adjacent neighbors to capture cross-frame trajectories. As a result, the generated features are able to gain an overview of local temporal movements to identify a sign. Thanks to its special attention on body trajectories, CorrNet achieves new state-of-the-art accuracy on four large-scale datasets, PHOENIX14, PHOENIX14-T, CSL-Daily, and CSL. A comprehensive comparison between CorrNet and previous spatial-temporal reasoning methods verifies its effectiveness. Visualizations are given to demonstrate the effects of CorrNet on emphasizing human body trajectories across adjacent frames.

Poster
Changsong Wen · Guoli Jia · Jufeng Yang

[ West Building Exhibit Halls ABC ]

Sarcasm indicates the literal meaning is contrary to the real attitude. Considering the popularity and complementarity of image-text data, we investigate the task of multi-modal sarcasm detection. Different from other multi-modal tasks, for the sarcastic data, there exists intrinsic incongruity between a pair of image and text as demonstrated in psychological theories. To tackle this issue, we propose a Dual Incongruity Perceiving (DIP) network consisting of two branches to mine the sarcastic information from factual and affective levels. For the factual aspect, we introduce a channel-wise reweighting strategy to obtain semantically discriminative embeddings, and leverage gaussian distribution to model the uncertain correlation caused by the incongruity. The distribution is generated from the latest data stored in the memory bank, which can adaptively model the difference of semantic similarity between sarcastic and non-sarcastic data. For the affective aspect, we utilize siamese layers with shared parameters to learn cross-modal sentiment information. Furthermore, we use the polarity value to construct a relation graph for the mini-batch, which forms the continuous contrastive loss to acquire affective embeddings. Extensive experiments demonstrate that our proposed method performs favorably against state-of-the-art approaches. Our code is released on https://github.com/downdric/MSD.

Poster
Aoxiong Yin · Tianyun Zhong · Li Tang · Weike Jin · Tao Jin · Zhou Zhao

[ West Building Exhibit Halls ABC ]

Most sign language translation (SLT) methods to date require the use of gloss annotations to provide additional supervision information, however, the acquisition of gloss is not easy. To solve this problem, we first perform an analysis of existing models to confirm how gloss annotations make SLT easier. We find that it can provide two aspects of information for the model, 1) it can help the model implicitly learn the location of semantic boundaries in continuous sign language videos, 2) it can help the model understand the sign language video globally. We then propose gloss attention, which enables the model to keep its attention within video segments that have the same semantics locally, just as gloss helps existing models do. Furthermore, we transfer the knowledge of sentence-to-sentence similarity from the natural language model to our gloss attention SLT network (GASLT) to help it understand sign language videos at the sentence level. Experimental results on multiple large-scale sign language datasets show that our proposed GASLT model significantly outperforms existing methods. Our code is provided in https://github.com/YinAoXiong/GASLT.

Poster
Heming Du · Lincheng Li · Zi Huang · Xin Yu

[ West Building Exhibit Halls ABC ]

Object-goal visual navigation aims at steering an agent toward an object via a series of moving steps. Previous works mainly focus on learning informative visual representations for navigation, but overlook the impacts of navigation states on the effectiveness and efficiency of navigation. We observe that high relevance among navigation states will cause navigation inefficiency or failure for existing methods. In this paper, we present a History-inspired Navigation Policy Learning (HiNL) framework to estimate navigation states effectively by exploring relationships among historical navigation states. In HiNL, we propose a History-aware State Estimation (HaSE) module to alleviate the impacts of dominant historical states on the current state estimation. Meanwhile, HaSE also encourages an agent to be alert to the current observation changes, thus enabling the agent to make valid actions. Furthermore, we design a History-based State Regularization (HbSR) to explicitly suppress the correlation among navigation states in training. As a result, our agent can update states more effectively while reducing the correlations among navigation states. Experiments on the artificial platform AI2-THOR (i.e.,, iTHOR and RoboTHOR) demonstrate that HiNL significantly outperforms state-of-the-art methods on both Success Rate and SPL in unseen testing environments.

Poster
Zijiao Yang · Arjun Majumdar · Stefan Lee

[ West Building Exhibit Halls ABC ]

To be successful, Vision-and-Language Navigation (VLN) agents must be able to ground instructions to actions based on their surroundings. In this work, we develop a methodology to study agent behavior on a skill-specific basis -- examining how well existing agents ground instructions about stopping, turning, and moving towards specified objects or rooms. Our approach is based on generating skill-specific interventions and measuring changes in agent predictions. We present a detailed case study analyzing the behavior of a recent agent and then compare multiple agents in terms of skill-specific competency scores. This analysis suggests that biases from training have lasting effects on agent behavior and that existing models are able to ground simple referring expressions. Our comparisons between models show that skill-specific scores correlate with improvements in overall VLN task performance.

Poster
Xiangyang Li · Zihan Wang · Jiahao Yang · Yaowei Wang · Shuqiang Jiang

[ West Building Exhibit Halls ABC ]

Vision-and-language navigation (VLN) is the task to enable an embodied agent to navigate to a remote location following the natural language instruction in real scenes. Most of the previous approaches utilize the entire features or object-centric features to represent navigable candidates. However, these representations are not efficient enough for an agent to perform actions to arrive the target location. As knowledge provides crucial information which is complementary to visible content, in this paper, we propose a Knowledge Enhanced Reasoning Model (KERM) to leverage knowledge to improve agent navigation ability. Specifically, we first retrieve facts (i.e., knowledge described by language descriptions) for the navigation views based on local regions from the constructed knowledge base. The retrieved facts range from properties of a single object (e.g., color, shape) to relationships between objects (e.g., action, spatial position), providing crucial information for VLN. We further present the KERM which contains the purification, fact-aware interaction, and instruction-guided aggregation modules to integrate visual, history, instruction, and fact features. The proposed KERM can automatically select and gather crucial and relevant cues, obtaining more accurate action prediction. Experimental results on the REVERIE, R2R, and SOON datasets demonstrate the effectiveness of the proposed method. The source code is available …

Poster
Mengmeng Xu · Yanghao Li · Cheng-Yang Fu · Bernard Ghanem · Tao Xiang · Juan-Manuel Pérez-Rúa

[ West Building Exhibit Halls ABC ]

This paper deals with the problem of localizing objects in image and video datasets from visual exemplars. In particular, we focus on the challenging problem of egocentric visual query localization. We first identify grave implicit biases in current query-conditioned model design and visual query datasets. Then, we directly tackle such biases at both frame and object set levels. Concretely, our method solves these issues by expanding limited annotations and dynamically dropping object proposals during training. Additionally, we propose a novel transformer-based module that allows for object-proposal set context to be considered while incorporating query information. We name our module Conditioned Contextual Transformer or CocoFormer. Our experiments show that the proposed adaptations improve egocentric query detection, leading to a better visual query localization system in both 2D and 3D configurations. Thus, we are able to improve frame-level detection performance from 26.28% to 31.26% in AP, which correspondingly improves the VQ2D and VQ3D localization scores by significant margins. Our improved context-aware query object detector ranked first and second in the VQ2D and VQ3D tasks in the 2nd Ego4D challenge. In addition, we showcase the relevance of our proposed model in the Few-Shot Detection (FSD) task, where we also achieve SOTA results.

Poster
Yaowei Li · Ruijie Quan · Linchao Zhu · Yi Yang

[ West Building Exhibit Halls ABC ]

Large-scale pre-training has brought unimodal fields such as computer vision and natural language processing to a new era. Following this trend, the size of multimodal learning models constantly increases, leading to an urgent need to reduce the massive computational cost of fine-tuning these models for downstream tasks. In this paper, we propose an efficient and flexible multimodal fusion method, namely PMF, tailored for fusing unimodally pretrained transformers. Specifically, we first present a modular multimodal fusion framework that exhibits high flexibility and facilitates mutual interactions among different modalities. In addition, we disentangle vanilla prompts into three types in order to learn different optimizing objectives for multimodal learning. It is also worth noting that we propose to add prompt vectors only on the deep layers of the unimodal transformers, thus significantly reducing the training memory usage. Experiment results show that our proposed method achieves comparable performance to several other multimodal finetuning methods with less than 3% trainable parameters and up to 66% saving of training memory usage.

Poster
Joy Hsu · Jiayuan Mao · Jiajun Wu

[ West Building Exhibit Halls ABC ]

Grounding object properties and relations in 3D scenes is a prerequisite for a wide range of artificial intelligence tasks, such as visually grounded dialogues and embodied manipulation. However, the variability of the 3D domain induces two fundamental challenges: 1) the expense of labeling and 2) the complexity of 3D grounded language. Hence, essential desiderata for models are to be data-efficient, generalize to different data distributions and tasks with unseen semantic forms, as well as ground complex language semantics (e.g., view-point anchoring and multi-object reference). To address these challenges, we propose NS3D, a neuro-symbolic framework for 3D grounding. NS3D translates language into programs with hierarchical structures by leveraging large language-to-code models. Different functional modules in the programs are implemented as neural networks. Notably, NS3D extends prior neuro-symbolic visual reasoning methods by introducing functional modules that effectively reason about high-arity relations (i.e., relations among more than two objects), key in disambiguating objects in complex 3D scenes. Modular and compositional architecture enables NS3D to achieve state-of-the-art results on the ReferIt3D view-dependence task, a 3D referring expression comprehension benchmark. Importantly, NS3D shows significantly improved performance on settings of data-efficiency and generalization, and demonstrate zero-shot transfer to an unseen 3D question-answering task.

Poster
Burak Uzkent · Amanmeet Garg · Wentao Zhu · Keval Doshi · Jingru Yi · Xiaolong Wang · Mohamed Omar

[ West Building Exhibit Halls ABC ]

Transformers have been recently utilized for vision and language tasks successfully. For example, recent image and language models with more than 200M parameters have been proposed to learn visual grounding in the pre-training step and show impressive results on downstream vision and language tasks. On the other hand, there exists a large amount of computational redundancy in these large models which skips their run-time efficiency. To address this problem, we propose dynamic inference for grounding based vision and language models conditioned on the input image-text pair. We first design an approach to dynamically skip multihead self-attention and feed forward network layers across two backbones and multimodal network. Additionally, we propose dynamic token pruning and fusion for two backbones. In particular, we remove redundant tokens at different levels of the backbones and fuse the image tokens with the language tokens in an adaptive manner. To learn policies for dynamic inference, we train agents using reinforcement learning. In this direction, we replace the CNN backbone in a recent grounding-based vision and language model, MDETR, with a vision transformer and call it ViTMDETR. Then, we apply our dynamic inference method to ViTMDETR, called D-ViTDMETR, and perform experiments on image-language tasks. Our results show …

Poster
Shuquan Ye · Yujia Xie · Dongdong Chen · Yichong Xu · Lu Yuan · Chenguang Zhu · Jing Liao

[ West Building Exhibit Halls ABC ]

This paper focuses on analyzing and improving the commonsense ability of recent popular vision-language (VL) models. Despite the great success, we observe that existing VL-models still lack commonsense knowledge/reasoning ability (e.g., “Lemons are sour”), which is a vital component towards artificial general intelligence. Through our analysis, we find one important reason is that existing large-scale VL datasets do not contain much commonsense knowledge, which motivates us to improve the commonsense of VL-models from the data perspective. Rather than collecting a new VL training dataset, we propose a more scalable strategy, i.e., “Data Augmentation with kNowledge graph linearization for CommonsensE capability” (DANCE). It can be viewed as one type of data augmentation technique, which can inject commonsense knowledge into existing VL datasets on the fly during training. More specifically, we leverage the commonsense knowledge graph (e.g., ConceptNet) and create variants of text description in VL datasets via bidirectional sub-graph sequentialization. For better commonsense evaluation, we further propose the first retrieval-based commonsense diagnostic benchmark. By conducting extensive experiments on some representative VL-models, we demonstrate that our DANCE technique is able to significantly improve the commonsense ability while maintaining the performance on vanilla retrieval tasks.

Poster
Wei Suo · Mengyang Sun · Weisong Liu · Yiqi Gao · Peng Wang · Yanning Zhang · Qi Wu

[ West Building Exhibit Halls ABC ]

VQA Natural Language Explanation (VQA-NLE) task aims to explain the decision-making process of VQA models in natural language. Unlike traditional attention or gradient analysis, free-text rationales can be easier to understand and gain users’ trust. Existing methods mostly use post-hoc or self-rationalization models to obtain a plausible explanation. However, these frameworks are bottlenecked by the following challenges: 1) the reasoning process cannot be faithfully responded to and suffer from the problem of logical inconsistency. 2) Human-annotated explanations are expensive and time-consuming to collect. In this paper, we propose a new Semi-Supervised VQA-NLE via Self-Critical Learning (S3C), which evaluates the candidate explanations by answering rewards to improve the logical consistency between answers and rationales. With a semi-supervised learning framework, the S3C can benefit from a tremendous amount of samples without human-annotated explanations. A large number of automatic measures and human evaluations all show the effectiveness of our method. Meanwhile, the framework achieves a new state-of-the-art performance on the two VQA-NLE datasets.

Poster
Sivan Doveh · Assaf Arbelle · Sivan Harary · Eli Schwartz · Roei Herzig · Raja Giryes · Rogerio Feris · Rameswar Panda · Shimon Ullman · Leonid Karlinsky

[ West Building Exhibit Halls ABC ]

Vision and Language (VL) models have demonstrated remarkable zero-shot performance in a variety of tasks. However, some aspects of complex language understanding still remain a challenge. We introduce the collective notion of Structured Vision & Language Concepts (SVLC) which includes object attributes, relations, and states which are present in the text and visible in the image. Recent studies have shown that even the best VL models struggle with SVLC. A possible way of fixing this issue is by collecting dedicated datasets for teaching each SVLC type, yet this might be expensive and time-consuming. Instead, we propose a more elegant data-driven approach for enhancing VL models’ understanding of SVLCs that makes more effective use of existing VL pre-training datasets and does not require any additional data. While automatic understanding of image structure still remains largely unsolved, language structure is much better modeled and understood, allowing for its effective utilization in teaching VL models. In this paper, we propose various techniques based on language structure understanding that can be used to manipulate the textual part of off-the-shelf paired VL datasets. VL models trained with the updated data exhibit a significant improvement of up to 15% in their SVLC understanding with only a …

Poster
Xiao Han · Xiatian Zhu · Licheng Yu · Li Zhang · Yi-Zhe Song · Tao Xiang

[ West Building Exhibit Halls ABC ]

In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically in each individual input/output format and dataset size. It has been common to design a task-specific model and fine-tune it independently from a pre-trained V+L model (e.g., CLIP). This results in parameter inefficiency and inability to exploit inter-task relatedness. To address such issues, we propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL) in this work. Compared with existing approaches, FAME-ViL applies a single model for multiple heterogeneous fashion tasks, therefore being much more parameter-efficient. It is enabled by two novel components: (1) a task-versatile architecture with cross-attention adapters and task-specific adapters integrated into a unified V+L model, and (2) a stable and effective multi-task training strategy that supports learning from heterogeneous data and prevents negative transfer. Extensive experiments on four fashion tasks show that our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models. Code is available at https://github.com/BrandonHanx/FAME-ViL.

Poster
Lei Jin · Gen Luo · Yiyi Zhou · Xiaoshuai Sun · Guannan Jiang · Annan Shu · Rongrong Ji

[ West Building Exhibit Halls ABC ]

Referring Expression Comprehension (REC) is a task of grounding the referent based on an expression, and its development is greatly limited by expensive instance-level annotations. Most existing weakly supervised methods are built based on two-stage detection networks, which are computationally expensive. In this paper, we resort to the efficient one-stage detector and propose a novel weakly supervised model called RefCLIP. Specifically, RefCLIP redefines weakly supervised REC as an anchor-text matching problem, which can avoid the complex post-processing in existing methods. To achieve weakly supervised learning, we introduce anchor-based contrastive loss to optimize RefCLIP via numerous anchor-text pairs. Based on RefCLIP, we further propose the first model-agnostic weakly supervised training scheme for existing REC models, where RefCLIP acts as a mature teacher to generate pseudo-labels for teaching common REC models. With our careful designs, this scheme can even help existing REC models achieve better weakly supervised performance than RefCLIP, e.g., TransVG and SimREC. To validate our approaches, we conduct extensive experiments on four REC benchmarks, i.e., RefCOCO, RefCOCO+, RefCOCOg and ReferItGame. Experimental results not only report our significant performance gains over existing weakly supervised models, e.g., +24.87% on RefCOCO, but also show the 5x faster inference speed. Project: https://refclip.github.io.

Poster
Hao Li · Jinguo Zhu · Xiaohu Jiang · Xizhou Zhu · Hongsheng Li · Chun Yuan · Xiaohua Wang · Yu Qiao · Xiaogang Wang · Wenhai Wang · Jifeng Dai

[ West Building Exhibit Halls ABC ]

Despite the remarkable success of foundation models, their task-specific fine-tuning paradigm makes them inconsistent with the goal of general perception modeling. The key to eliminating this inconsistency is to use generalist models for general task modeling. However, existing attempts at generalist models are inadequate in both versatility and performance. In this paper, we propose Uni-Perceiver v2, which is the first generalist model capable of handling major large-scale vision and vision-language tasks with competitive performance. Specifically, images are encoded as general region proposals, while texts are encoded via a Transformer-based language model. The encoded representations are transformed by a task-agnostic decoder. Different tasks are formulated as a unified maximum likelihood estimation problem. We further propose an effective optimization technique named Task-Balanced Gradient Normalization to ensure stable multi-task learning with an unmixed sampling strategy, which is helpful for tasks requiring large batch-size training. After being jointly trained on various tasks, Uni-Perceiver v2 is capable of directly handling downstream tasks without any task-specific adaptation. Results show that Uni-Perceiver v2 outperforms all existing generalist models in both versatility and performance. Meanwhile, compared with the commonly-recognized strong baselines that require tasks-specific fine-tuning, Uni-Perceiver v2 achieves competitive performance on a broad range of vision and vision-language …

Poster
Shi Chen · Nachiappan Valliappan · Shaolei Shen · Xinyu Ye · Kai Kohlhoff · Junfeng He

[ West Building Exhibit Halls ABC ]

Everyone is unique. Given the same visual stimuli, people’s attention is driven by both salient visual cues and their own inherent preferences. Knowledge of visual preferences not only facilitates understanding of fine-grained attention patterns of diverse users, but also has the potential of benefiting the development of customized applications. Nevertheless, existing saliency models typically limit their scope to attention as it applies to the general population and ignore the variability between users’ behaviors. In this paper, we identify the critical roles of visual preferences in attention modeling, and for the first time study the problem of user-aware saliency modeling. Our work aims to advance attention research from three distinct perspectives: (1) We present a new model with the flexibility to capture attention patterns of various combinations of users, so that we can adaptively predict personalized attention, user group attention, and general saliency at the same time with one single model; (2) To augment models with knowledge about the composition of attention from different users, we further propose a principled learning method to understand visual attention in a progressive manner; and (3) We carry out extensive analyses on publicly available saliency datasets to shed light on the roles of visual preferences. …

Poster
Thomas Fel · Agustin Picard · Louis Béthune · Thibaut Boissin · David Vigouroux · Julien Colin · Rémi Cadène · Thomas Serre

[ West Building Exhibit Halls ABC ]

Attribution methods are a popular class of explainability methods that use heatmaps to depict the most important areas of an image that drive a model decision. Nevertheless, recent work has shown that these methods have limited utility in practice, presumably because they only highlight the most salient parts of an image (i.e., “where” the model looked) and do not communicate any information about “what” the model saw at those locations. In this work, we try to fill in this gap with Craft -- a novel approach to identify both “what” and “where” by generating concept-based explanations. We introduce 3 new ingredients to the automatic concept extraction literature: (i) a recursive strategy to detect and decompose concepts across layers, (ii) a novel method for a more faithful estimation of concept importance using Sobol indices, and (iii) the use of implicit differentiation to unlock Concept Attribution Maps. We conduct both human and computer vision experiments to demonstrate the benefits of the proposed approach. We show that our recursive decomposition generates meaningful and accurate concepts and that the proposed concept importance estimation technique is more faithful to the model than previous methods. When evaluating the usefulness of the method for human experimenters on …

Poster
Chengzhi Mao · Revant Teotia · Amrutha Sundar · Sachit Menon · Junfeng Yang · Xin Wang · Carl Vondrick

[ West Building Exhibit Halls ABC ]

Many visual recognition models are evaluated only on their classification accuracy, a metric for which they obtain strong performance. In this paper, we investigate whether computer vision models can also provide correct rationales for their predictions. We propose a “doubly right” object recognition benchmark, where the metric requires the model to simultaneously produce both the right labels as well as the right rationales. We find that state-of-the-art visual models, such as CLIP, often provide incorrect rationales for their categorical predictions. However, by transferring the rationales from language models into visual representations through a tailored dataset, we show that we can learn a “why prompt,” which adapts large visual representations to produce correct rationales. Visualizations and empirical experiments show that our prompts significantly improve performance on doubly right object recognition, in addition to zero-shot transfer to unseen tasks and datasets.

Poster
Ayan Kumar Bhunia · Subhadeep Koley · Amandeep Kumar · Aneeshan Sain · Pinaki Nath Chowdhury · Tao Xiang · Yi-Zhe Song

[ West Building Exhibit Halls ABC ]

Human sketch has already proved its worth in various visual understanding tasks (e.g., retrieval, segmentation, image-captioning, etc). In this paper, we reveal a new trait of sketches -- that they are also salient. This is intuitive as sketching is a natural attentive process at its core. More specifically, we aim to study how sketches can be used as a weak label to detect salient objects present in an image. To this end, we propose a novel method that emphasises on how “salient object” could be explained by hand-drawn sketches. To accomplish this, we introduce a photo-to-sketch generation model that aims to generate sequential sketch coordinates corresponding to a given visual photo through a 2D attention mechanism. Attention maps accumulated across the time steps give rise to salient regions in the process. Extensive quantitative and qualitative experiments prove our hypothesis and delineate how our sketch-based saliency detection model gives a competitive performance compared to the state-of-the-art.

Poster
Meike Nauta · Jörg Schlötterer · Maurice van Keulen · Christin Seifert

[ West Building Exhibit Halls ABC ]

Interpretable methods based on prototypical patches recognize various components in an image in order to explain their reasoning to humans. However, existing prototype-based methods can learn prototypes that are not in line with human visual perception, i.e., the same prototype can refer to different concepts in the real world, making interpretation not intuitive. Driven by the principle of explainability-by-design, we introduce PIP-Net (Patch-based Intuitive Prototypes Network): an interpretable image classification model that learns prototypical parts in a self-supervised fashion which correlate better with human vision. PIP-Net can be interpreted as a sparse scoring sheet where the presence of a prototypical part in an image adds evidence for a class. The model can also abstain from a decision for out-of-distribution data by saying “I haven’t seen this before”. We only use image-level labels and do not rely on any part annotations. PIP-Net is globally interpretable since the set of learned prototypes shows the entire reasoning of the model. A smaller local explanation locates the relevant prototypes in one image. We show that our prototypes correlate with ground-truth object parts, indicating that PIP-Net closes the “semantic gap” between latent space and pixel space. Hence, our PIP-Net with interpretable prototypes enables users to …

Poster
Ke Li · Kaiyue Pang · Yi-Zhe Song

[ West Building Exhibit Halls ABC ]

The sketch community has faced up to its unique challenges over the years, that of data scarcity however still remains the most significant to date. This lack of sketch data has imposed on the community a few “peculiar” design choices -- the most representative of them all is perhaps the coerced utilisation of photo-based pre-training (i.e., no sketch), for many core tasks that otherwise dictates specific sketch understanding. In this paper, we ask just the one question -- can we make such photo-based pre-training, to actually benefit sketch? Our answer lies in cultivating the topology of photo data learned at pre-training, and use that as a “free” source of supervision for downstream sketch tasks. In particular, we use fine-grained sketch-based image retrieval (FG-SBIR), one of the most studied and data-hungry sketch tasks, to showcase our new perspective on pre-training. In this context, the topology-informed supervision learned from photos act as a constraint that take effect at every fine-tuning step -- neighbouring photos in the pre-trained model remain neighbours under each FG-SBIR updates. We further portray this neighbourhood consistency constraint as a photo ranking problem and formulate it into a neat cross-modal triplet loss. We also show how this target is …

Poster
Aneeshan Sain · Ayan Kumar Bhunia · Pinaki Nath Chowdhury · Subhadeep Koley · Tao Xiang · Yi-Zhe Song

[ West Building Exhibit Halls ABC ]

In this paper, we leverage CLIP for zero-shot sketch based image retrieval (ZS-SBIR). We are largely inspired by recent advances on foundation models and the unparalleled generalisation ability they seem to offer, but for the first time tailor it to benefit the sketch community. We put forward novel designs on how best to achieve this synergy, for both the category setting and the fine-grained setting (“all”). At the very core of our solution is a prompt learning setup. First we show just via factoring in sketch-specific prompts, we already have a category-level ZS-SBIR system that overshoots all prior arts, by a large margin (24.8%) - a great testimony on studying the CLIP and ZS-SBIR synergy. Moving onto the fine-grained setup is however trickier, and requires a deeper dive into this synergy. For that, we come up with two specific designs to tackle the fine-grained matching nature of the problem: (i) an additional regularisation loss to ensure the relative separation between sketches and photos is uniform across categories, which is not the case for the gold standard standalone triplet loss, and (ii) a clever patch shuffling technique to help establishing instance-level structural correspondences between sketch-photo pairs. With these designs, we again …

Poster
Yixuan Wei · Yue Cao · Zheng Zhang · Houwen Peng · Zhuliang Yao · Zhenda Xie · Han Hu · Baining Guo

[ West Building Exhibit Halls ABC ]

This paper presents a method that effectively combines two prevalent visual recognition methods, i.e., image classification and contrastive language-image pre-training, dubbed iCLIP. Instead of naive multi-task learning that use two separate heads for each task, we fuse the two tasks in a deep fashion that adapts the image classification to share the same formula and the same model weights with the language-image pre-training. To further bridge these two tasks, we propose to enhance the category names in image classification tasks using external knowledge, such as their descriptions in dictionaries. Extensive experiments show that the proposed method combines the advantages of two tasks well: the strong discrimination ability in image classification tasks due to the clear and clean category labels, and the good zero-shot ability in CLIP tasks ascribed to the richer semantics in the text descriptions. In particular, it reaches 82.9% top-1 accuracy on IN-1K, and surpasses CLIPby 1.8%, with similar model size, on zero-shot recognition of Kornblith 12-dataset benchmark. The code and models are publicly available at https://github.com/weiyx16/iCLIP.

Poster
Ding Jiang · Mang Ye

[ West Building Exhibit Halls ABC ]

Text-to-image person retrieval aims to identify the target person based on a given textual description query. The primary challenge is to learn the mapping of visual and textual modalities into a common latent space. Prior works have attempted to address this challenge by leveraging separately pre-trained unimodal models to extract visual and textual features. However, these approaches lack the necessary underlying alignment capabilities required to match multimodal data effectively. Besides, these works use prior information to explore explicit part alignments, which may lead to the distortion of intra-modality information. To alleviate these issues, we present IRRA: a cross-modal Implicit Relation Reasoning and Aligning framework that learns relations between local visual-textual tokens and enhances global image-text matching without requiring additional prior supervision. Specifically, we first design an Implicit Relation Reasoning module in a masked language modeling paradigm. This achieves cross-modal interaction by integrating the visual cues into the textual tokens with a cross-modal multimodal interaction encoder. Secondly, to globally align the visual and textual embeddings, Similarity Distribution Matching is proposed to minimize the KL divergence between image-text similarity distributions and the normalized label matching distributions. The proposed method achieves new state-of-the-art results on all three public datasets, with a notable margin …

Poster
Jaeyoo Park · Bohyung Han

[ West Building Exhibit Halls ABC ]

We propose a visual-linguistic representation learning approach within a self-supervised learning framework by introducing a new operation, loss, and data augmentation strategy. First, we generate diverse features for the image-text matching (ITM) task via soft-masking the regions in an image, which are most relevant to a certain word in the corresponding caption, instead of completely removing them. Since our framework relies only on image-caption pairs with no fine-grained annotations, we identify the relevant regions to each word by computing the word-conditional visual attention using multi-modal encoder. Second, we encourage the model to focus more on hard but diverse examples by proposing a focal loss for the image-text contrastive learning (ITC) objective, which alleviates the inherent limitations of overfitting and bias issues. Last, we perform multi-modal data augmentations for self-supervised learning via mining various examples by masking texts and rendering distortions on images. We show that the combination of these three innovations is effective for learning a pretrained model, leading to outstanding performance on multiple vision-language downstream tasks.

Poster
Zixian Guo · Bowen Dong · Zhilong Ji · Jinfeng Bai · Yiwen Guo · Wangmeng Zuo

[ West Building Exhibit Halls ABC ]

Prompt tuning has been employed as an efficient way to adapt large vision-language pre-trained models (e.g. CLIP) to various downstream tasks in data-limited or label-limited settings. Nonetheless, visual data (e.g., images) is by default prerequisite for learning prompts in existing methods. In this work, we advocate that the effectiveness of image-text contrastive learning in aligning the two modalities (for training CLIP) further makes it feasible to treat texts as images for prompt tuning and introduce TaI prompting. In contrast to the visual data, text descriptions are easy to collect, and their class labels can be directly derived. Particularly, we apply TaI prompting to multi-label image recognition, where sentences in the wild serve as alternatives to images for prompt tuning. Moreover, with TaI, double-grained prompt tuning (TaI-DPT) is further presented to extract both coarse-grained and fine-grained embeddings for enhancing the multi-label recognition performance. Experimental results show that our proposed TaI-DPT outperforms zero-shot CLIP by a large margin on multiple benchmarks, e.g., MS-COCO, VOC2007, and NUS-WIDE, while it can be combined with existing methods of prompting from images to improve recognition performance further. The code is released at https://github.com/guozix/TaI-DPT.

Poster
Mehdi Cherti · Romain Beaumont · Ross Wightman · Mitchell Wortsman · Gabriel Ilharco · Cade Gordon · Christoph Schuhmann · Ludwig Schmidt · Jenia Jitsev

[ West Building Exhibit Halls ABC ]

Scaling up neural networks has led to remarkable performance across a wide range of tasks. Moreover, performance often follows reliable scaling laws as a function of training set size, model size, and compute, which offers valuable guidance as large-scale experiments are becoming increasingly expensive. However, previous work on scaling laws has primarily used private data & models or focused on uni-modal language or vision learning. To address these limitations, we investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository. Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks including zero-shot classification, retrieval, linear probing, and end-to-end fine-tuning. We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures and similar training recipes. We open-source our evaluation workflow and all models, including the largest public CLIP models, to ensure reproducibility and make scaling laws research more accessible. Source code and instructions to reproduce this study is available at https://github.com/LAION-AI/scaling-laws-openclip.

Poster
Zheng Wang · Zhenwei Gao · Kangshuai Guo · Yang Yang · Xiaoming Wang · Heng Tao Shen

[ West Building Exhibit Halls ABC ]

Image-text retrieval is a fundamental task to bridge vision and language by exploiting various strategies to fine-grained alignment between regions and words. This is still tough mainly because of one-to-many correspondence, where a set of matches from another modality can be accessed by a random query. While existing solutions to this problem including multi-point mapping, probabilistic distribution, and geometric embedding have made promising progress, one-to-many correspondence is still under-explored. In this work, we develop a Multilateral Semantic Relations Modeling (termed MSRM) for image-text retrieval to capture the one-to-many correspondence between multiple samples and a given query via hypergraph modeling. Specifically, a given query is first mapped as a probabilistic embedding to learn its true semantic distribution based on Mahalanobis distance. Then each candidate instance in a mini-batch is regarded as a hypergraph node with its mean semantics while a Gaussian query is modeled as a hyperedge to capture the semantic correlations beyond the pair between candidate points and the query. Comprehensive experimental results on two widely used datasets demonstrate that our MSRM method can outperform state-of-the-art methods in the settlement of multiple matches while still maintaining the comparable performance of instance-level matching. Our codes and checkpoints will be released soon.

Poster
Rita Ramos · Bruno Martins · Desmond Elliott · Yova Kementchedjhieva

[ West Building Exhibit Halls ABC ]

Recent advances in image captioning have focused on scaling the data and model size, substantially increasing the cost of pre-training and finetuning. As an alternative to large models, we present SmallCap, which generates a caption conditioned on an input image and related captions retrieved from a datastore. Our model is lightweight and fast to train as the only learned parameters are in newly introduced cross-attention layers between a pre-trained CLIP encoder and GPT-2 decoder. SmallCap can transfer to new domains without additional finetuning and can exploit large-scale data in a training-free fashion since the contents of the datastore can be readily replaced. Our experiments show that SmallCap, trained only on COCO, has competitive performance on this benchmark, and also transfers to other domains without retraining, solely through retrieval from target-domain data. Further improvement is achieved through the training-free exploitation of diverse human-labeled and web data, which proves effective for a range of domains, including the nocaps benchmark, designed to test generalization to unseen visual concepts.

Poster
Tinglei Feng · Jiaxuan Liu · Jufeng Yang

[ West Building Exhibit Halls ABC ]

Pre-training of deep convolutional neural networks (DCNNs) plays a crucial role in the field of visual sentiment analysis (VSA). Most proposed methods employ the off-the-shelf backbones pre-trained on large-scale object classification datasets (i.e., ImageNet). While it boosts performance for a big margin against initializing model states from random, we argue that DCNNs simply pre-trained on ImageNet may excessively focus on recognizing objects, but failed to provide high-level concepts in terms of sentiment. To address this long-term overlooked problem, we propose a sentiment-oriented pre-training method that is built upon human visual sentiment perception (VSP) mechanism. Specifically, we factorize the process of VSP into three steps, namely stimuli taking, holistic organizing, and high-level perceiving. From imitating each VSP step, a total of three models are separately pre-trained via our devised sentiment-aware tasks that contribute to excavating sentiment-discriminated representations. Moreover, along with our elaborated multi-model amalgamation strategy, the prior knowledge learned from each perception step can be effectively transferred into a single target model, yielding substantial performance gains. Finally, we verify the superiorities of our proposed method over extensive experiments, covering mainstream VSA tasks from single-label learning (SLL), multi-label learning (MLL), to label distribution learning (LDL). Experiment results demonstrate that our proposed method …

Poster
Kuniaki Saito · Kihyuk Sohn · Xiang Zhang · Chun-Liang Li · Chen-Yu Lee · Kate Saenko · Tomas Pfister

[ West Building Exhibit Halls ABC ]

Pretraining visual models on web-scale image-caption datasets has recently emerged as a powerful alternative to traditional pretraining on image classification data. Image-caption datasets are more “open-domain”, containing broader scene types and vocabulary words, and result in models that have strong performance in few- and zero-shot recognition tasks. However large-scale classification datasets can provide fine-grained categories with a balanced label distribution. In this work, we study a pretraining strategy that uses both classification and caption datasets to unite their complementary benefits. First, we show that naively unifying the datasets results in sub-optimal performance in downstream zero-shot recognition tasks, as the model is affected by dataset bias: the coverage of image domains and vocabulary words is different in each dataset. We address this problem with novel Prefix Conditioning, a simple yet effective method that helps disentangle dataset biases from visual concepts. This is done by introducing prefix tokens that inform the language encoder of the input data type (e.g., classification vs caption) at training time. Our approach allows the language encoder to learn from both datasets while also tailoring feature extraction to each dataset. Prefix conditioning is generic and can be easily integrated into existing VL pretraining objectives, such as CLIP or …

Poster
Yuchen Ren · Zhendong Mao · Shancheng Fang · Yan Lu · Tong He · Hao Du · Yongdong Zhang · Wanli Ouyang

[ West Building Exhibit Halls ABC ]

Existing image captioning methods are under the assumption that the training and testing data are from the same domain or that the data from the target domain (i.e., the domain that testing data lie in) are accessible. However, this assumption is invalid in real-world applications where the data from the target domain is inaccessible. In this paper, we introduce a new setting called Domain Generalization for Image Captioning (DGIC), where the data from the target domain is unseen in the learning process. We first construct a benchmark dataset for DGIC, which helps us to investigate models’ domain generalization (DG) ability on unseen domains. With the support of the new benchmark, we further propose a new framework called language-guided semantic metric learning (LSML) for the DGIC setting. Experiments on multiple datasets demonstrate the challenge of the task and the effectiveness of our newly proposed benchmark and LSML framework.

Poster
Weijie Tu · Weijian Deng · Tom Gedeon · Liang Zheng

[ West Building Exhibit Halls ABC ]

This work investigates dataset vectorization for two dataset-level tasks: assessing training set suitability and test set difficulty. The former measures how suitable a training set is for a target domain, while the latter studies how challenging a test set is for a learned model. Central of the two tasks is measuring the underlying relationship between datasets. This needs a desirable dataset vectorization scheme, which should preserve as much discriminative dataset information as possible so that the distance between the resulting dataset vectors can reflect dataset-to-dataset similarity. To this end, we propose a bag-of-prototypes (BoP) dataset representation that extends the image level bag consisting of patch descriptors to dataset-level bag consisting of semantic prototypes. Specifically, we develop a codebook consisting of K prototypes clustered from a reference dataset. Given a dataset to be encoded, we quantize each of its image features to a certain prototype in the codebook and obtain a K-dimensional histogram feature. Without assuming access to dataset labels, the BoP representation provides rich characterization of dataset semantic distribution. Further, BoP representations cooperates well with Jensen-Shannon divergence for measuring dataset-to-dataset similarity. Albeit very simple, BoP consistently shows its advantage over existing representations on a series of benchmarks for two dataset-level …

Poster
Dingkang Liang · Jiahao Xie · Zhikang Zou · Xiaoqing Ye · Wei Xu · Xiang Bai

[ West Building Exhibit Halls ABC ]

Supervised crowd counting relies heavily on costly manual labeling, which is difficult and expensive, especially in dense scenes. To alleviate the problem, we propose a novel unsupervised framework for crowd counting, named CrowdCLIP. The core idea is built on two observations: 1) the recent contrastive pre-trained vision-language model (CLIP) has presented impressive performance on various downstream tasks; 2) there is a natural mapping between crowd patches and count text. To the best of our knowledge, CrowdCLIP is the first to investigate the vision-language knowledge to solve the counting problem. Specifically, in the training stage, we exploit the multi-modal ranking loss by constructing ranking text prompts to match the size-sorted crowd patches to guide the image encoder learning. In the testing stage, to deal with the diversity of image patches, we propose a simple yet effective progressive filtering strategy to first select the highly potential crowd patches and then map them into the language space with various counting intervals. Extensive experiments on five challenging datasets demonstrate that the proposed CrowdCLIP achieves superior performance compared to previous unsupervised state-of-the-art counting methods. Notably, CrowdCLIP even surpasses some popular fully-supervised methods under the cross-dataset setting. The source code will be available at https://github.com/dk-liang/CrowdCLIP.

Poster
Jianfeng He · Yuan Gao · Tianzhu Zhang · Zhe Zhang · Feng Wu

[ West Building Exhibit Halls ABC ]

Establishing pixel-level matches between image pairs is vital for a variety of computer vision applications. However, achieving robust image matching remains challenging because CNN extracted descriptors usually lack discriminative ability in texture-less regions and keypoint detectors are only good at identifying keypoints with a specific level of structure. To deal with these issues, a novel image matching method is proposed by Jointly Learning Hierarchical Detectors and Contextual Descriptors via Agent-based Transformers (D2Former), including a contextual feature descriptor learning (CFDL) module and a hierarchical keypoint detector learning (HKDL) module. The proposed D2Former enjoys several merits. First, the proposed CFDL module can model long-range contexts efficiently and effectively with the aid of designed descriptor agents. Second, the HKDL module can generate keypoint detectors in a hierarchical way, which is helpful for detecting keypoints with diverse levels of structures. Extensive experimental results on four challenging benchmarks show that our proposed method significantly outperforms state-of-the-art image matching methods.

Poster
Yong Zhang · Yingwei Pan · Ting Yao · Rui Huang · Tao Mei · Chang-Wen Chen

[ West Building Exhibit Halls ABC ]

Scene graph generation (SGG) aims to abstract an image into a graph structure, by representing objects as graph nodes and their relations as labeled edges. However, two knotty obstacles limit the practicability of current SGG methods in real-world scenarios: 1) training SGG models requires time-consuming ground-truth annotations, and 2) the closed-set object categories make the SGG models limited in their ability to recognize novel objects outside of training corpora. To address these issues, we novelly exploit a powerful pre-trained visual-semantic space (VSS) to trigger language-supervised and open-vocabulary SGG in a simple yet effective manner. Specifically, cheap scene graph supervision data can be easily obtained by parsing image language descriptions into semantic graphs. Next, the noun phrases on such semantic graphs are directly grounded over image regions through region-word alignment in the pre-trained VSS. In this way, we enable open-vocabulary object detection by performing object category name grounding with a text prompt in this VSS. On the basis of visually-grounded objects, the relation representations are naturally built for relation recognition, pursuing open-vocabulary SGG. We validate our proposed approach with extensive experiments on the Visual Genome benchmark across various SGG scenarios (i.e., supervised / language-supervised, closed-set / open-vocabulary). Consistent superior performances are …

Poster
Sanghyun Kim · Deunsol Jung · Minsu Cho

[ West Building Exhibit Halls ABC ]

Recent state-of-the-art methods for HOI detection typically build on transformer architectures with two decoder branches, one for human-object pair detection and the other for interaction classification. Such disentangled transformers, however, may suffer from insufficient context exchange between the branches and lead to a lack of context information for relational reasoning, which is critical in discovering HOI instances. In this work, we propose the multiplex relation network (MUREN) that performs rich context exchange between three decoder branches using unary, pairwise, and ternary relations of human, object, and interaction tokens. The proposed method learns comprehensive relational contexts for discovering HOI instances, achieving state-of-the-art performance on two standard benchmarks for HOI detection, HICO-DET and V-COCO.

Poster
Jilan Xu · Junlin Hou · Yuejie Zhang · Rui Feng · Yi Wang · Yu Qiao · Weidi Xie

[ West Building Exhibit Halls ABC ]

In this paper, we consider the problem of open-vocabulary semantic segmentation (OVS), which aims to segment objects of arbitrary classes instead of pre-defined, closed-set categories. The main contributions are as follows: First, we propose a transformer-based model for OVS, termed as OVSegmentor, which only exploits web-crawled image-text pairs for pre-training without using any mask annotations. OVSegmentor assembles the image pixels into a set of learnable group tokens via a slot-attention based binding module, and aligns the group tokens to the corresponding caption embedding. Second, we propose two proxy tasks for training, namely masked entity completion and cross-image mask consistency. The former aims to infer all masked entities in the caption given the group tokens, that enables the model to learn fine-grained alignment between visual groups and text entities. The latter enforces consistent mask predictions between images that contain shared entities, which encourages the model to learn visual invariance. Third, we construct CC4M dataset for pre-training by filtering CC12M with frequently appeared entities, which significantly improves training efficiency. Fourth, we perform zero-shot transfer on three benchmark datasets, PASCAL VOC 2012, PASCAL Context, and COCO Object. Our model achieves superior segmentation results over the state-of-the-art method by using only 3% data (4M …

Poster
Mengde Xu · Zheng Zhang · Fangyun Wei · Han Hu · Xiang Bai

[ West Building Exhibit Halls ABC ]

This paper presents a new framework for open-vocabulary semantic segmentation with the pre-trained vision-language model, named SAN. Our approach models the semantic segmentation task as a region recognition problem. A side network is attached to a frozen CLIP model with two branches: one for predicting mask proposals, and the other for predicting attention bias which is applied in the CLIP model to recognize the class of masks. This decoupled design has the benefit CLIP in recognizing the class of mask proposals. Since the attached side network can reuse CLIP features, it can be very light. In addition, the entire network can be trained end-to-end, allowing the side network to be adapted to the frozen CLIP model, which makes the predicted mask proposals CLIP-aware. Our approach is fast, accurate, and only adds a few additional trainable parameters. We evaluate our approach on multiple semantic segmentation benchmarks. Our method significantly outperforms other counterparts, with up to 18 times fewer trainable parameters and 19 times faster inference speed. We hope our approach will serve as a solid baseline and help ease future research in open-vocabulary semantic segmentation.

Poster
Jiarui Xu · Sifei Liu · Arash Vahdat · Wonmin Byeon · Xiaolong Wang · Shalini De Mello

[ West Building Exhibit Halls ABC ]

We present ODISE: Open-vocabulary DIffusion-based panoptic SEgmentation, which unifies pre-trained text-image diffusion and discriminative models to perform open-vocabulary panoptic segmentation. Text-to-image diffusion models have the remarkable ability to generate high-quality images with diverse open-vocabulary language descriptions. This demonstrates that their internal representation space is highly correlated with open concepts in the real world. Text-image discriminative models like CLIP, on the other hand, are good at classifying images into open-vocabulary labels. We leverage the frozen internal representations of both these models to perform panoptic segmentation of any category in the wild. Our approach outperforms the previous state of the art by significant margins on both open-vocabulary panoptic and semantic segmentation tasks. In particular, with COCO training only, our method achieves 23.4 PQ and 30.0 mIoU on the ADE20K dataset, with 8.3 PQ and 7.9 mIoU absolute improvement over the previous state of the art. We open-source our code and models at https://github.com/NVlabs/ODISE.

Poster
Sukmin Yun · Seong Hyeon Park · Paul Hongsuck Seo · Jinwoo Shin

[ West Building Exhibit Halls ABC ]

Vision-language (VL) pre-training has recently gained much attention for its transferability and flexibility in novel concepts (e.g., cross-modality transfer) across various visual tasks. However, VL-driven segmentation has been under-explored, and the existing approaches still have the burden of acquiring additional training images or even segmentation annotations to adapt a VL model to downstream segmentation tasks. In this paper, we introduce a novel image-free segmentation task where the goal is to perform semantic segmentation given only a set of the target semantic categories, but without any task-specific images and annotations. To tackle this challenging task, our proposed method, coined IFSeg, generates VL-driven artificial image-segmentation pairs and updates a pre-trained VL model to a segmentation task. We construct this artificial training data by creating a 2D map of random semantic categories and another map of their corresponding word tokens. Given that a pre-trained VL model projects visual and text tokens into a common space where tokens that share the semantics are located closely, this artificially generated word map can replace the real image inputs for such a VL model. Through an extensive set of experiments, our model not only establishes an effective baseline for this novel task but also demonstrates strong performances …

Poster
Haoran Geng · Ziming Li · Yiran Geng · Jiayi Chen · Hao Dong · He Wang

[ West Building Exhibit Halls ABC ]

Learning a generalizable object manipulation policy is vital for an embodied agent to work in complex real-world scenes. Parts, as the shared components in different object categories, have the potential to increase the generalization ability of the manipulation policy and achieve cross-category object manipulation. In this work, we build the first large-scale, part-based cross-category object manipulation benchmark, PartManip, which is composed of 11 object categories, 494 objects, and 1432 tasks in 6 task classes. Compared to previous work, our benchmark is also more diverse and realistic, i.e., having more objects and using sparse-view point cloud as input without oracle information like part segmentation. To tackle the difficulties of vision-based policy learning, we first train a state-based expert with our proposed part-based canonicalization and part-aware rewards, and then distill the knowledge to a vision-based student. We also find an expressive backbone is essential to overcome the large diversity of different objects. For cross-category generalization, we introduce domain adversarial learning for domain-invariant feature extraction. Extensive experiments in simulation show that our learned policy can outperform other methods by a large margin, especially on unseen object categories. We also demonstrate our method can successfully manipulate novel objects in the real world.

Poster
Jitesh Jain · Jiachen Li · Mang Tik Chiu · Ali Hassani · Nikita Orlov · Humphrey Shi

[ West Building Exhibit Halls ABC ]

Universal Image Segmentation is not a new concept.Past attempts to unify image segmentation include scene parsing, panoptic segmentation, and, more recently, new panoptic architectures. However, such panoptic architectures do not truly unify image segmentation because they need to be trained individually on the semantic, instance, or panoptic segmentation to achieve the best performance. Ideally, a truly universal framework should be trained only once and achieve SOTA performance across all three image segmentation tasks. To that end, we propose OneFormer, a universal image segmentation framework that unifies segmentation with a multi-task train-once design. We first propose a task-conditioned joint training strategy that enables training on ground truths of each domain (semantic, instance, and panoptic segmentation) within a single multi-task training process. Secondly, we introduce a task token to condition our model on the task at hand, making our model task-dynamic to support multi-task training and inference. Thirdly, we propose using a query-text contrastive loss during training to establish better inter-task and inter-class distinctions. Notably, our single OneFormer model outperforms specialized Mask2Former models across all three segmentation tasks on ADE20k, Cityscapes, and COCO, despite the latter being trained on each task individually. We believe OneFormer is a significant step towards making image …

Poster
Xinyu Liu · Beiwen Tian · Zhen Wang · Rui Wang · Kehua Sheng · Bo Zhang · Hao Zhao · Guyue Zhou

[ West Building Exhibit Halls ABC ]

Thanks to the impressive progress of large-scale vision-language pretraining, recent recognition models can classify arbitrary objects in a zero-shot and open-set manner, with a surprisingly high accuracy. However, translating this success to semantic segmentation is not trivial, because this dense prediction task requires not only accurate semantic understanding but also fine shape delineation and existing vision-language models are trained with image-level language descriptions. To bridge this gap, we pursue shape-aware zero-shot semantic segmentation in this study. Inspired by classical spectral methods in the image segmentation literature, we propose to leverage the eigen vectors of Laplacian matrices constructed with self-supervised pixel-wise features to promote shape-awareness. Despite that this simple and effective technique does not make use of the masks of seen classes at all, we demonstrate that it out-performs a state-of-the-art shape-aware formulation that aligns ground truth and predicted edges during training. We also delve into the performance gains achieved on different datasets using different backbones and draw several interesting and conclusive observations: the benefits of promoting shape-awareness highly relates to mask compactness and language embedding locality. Finally, our method sets new state-of-the-art performance for zero-shot semantic segmentation on both Pascal and COCO, with significant margins. Code and models will be …

Poster
Fabio Cermelli · Matthieu Cord · Arthur Douillard

[ West Building Exhibit Halls ABC ]

Continual learning for segmentation has recently seen increasing interest. However, all previous works focus on narrow semantic segmentation and disregard panoptic segmentation, an important task with real-world impacts. In this paper, we present the first continual learning model capable of operating on both semantic and panoptic segmentation. Inspired by recent transformer approaches that consider segmentation as a mask-classification problem, we design CoMFormer. Our method carefully exploits the properties of transformer architectures to learn new classes over time. Specifically, we propose a novel adaptive distillation loss along with a mask-based pseudo-labeling technique to effectively prevent forgetting. To evaluate our approach, we introduce a novel continual panoptic segmentation benchmark on the challenging ADE20K dataset. Our CoMFormer outperforms all the existing baselines by forgetting less old classes but also learning more effectively new classes. In addition, we also report an extensive evaluation in the large-scale continual semantic segmentation scenario showing that CoMFormer also significantly outperforms state-of-the-art methods.

Poster
Mengxue Qu · Yu Wu · Yunchao Wei · Wu Liu · Xiaodan Liang · Yao Zhao

[ West Building Exhibit Halls ABC ]

Referring Expression Segmentation (RES) can facilitate pixel-level semantic alignment between vision and language. Most of the existing RES approaches require massive pixel-level annotations, which are expensive and exhaustive. In this paper, we propose a new partially supervised training paradigm for RES, i.e., training using abundant referring bounding boxes and only a few (e.g., 1%) pixel-level referring masks. To maximize the transferability from the REC model, we construct our model based on the point-based sequence prediction model. We propose the co-content teacher-forcing to make the model explicitly associate the point coordinates (scale values) with the referred spatial features, which alleviates the exposure bias caused by the limited segmentation masks. To make the most of referring bounding box annotations, we further propose the resampling pseudo points strategy to select more accurate pseudo-points as supervision. Extensive experiments show that our model achieves 52.06% in terms of accuracy (versus 58.93% in fully supervised setting) on RefCOCO+@testA, when only using 1% of the mask annotations.

Poster
Zhizheng Liu · Francesco Milano · Jonas Frey · Roland Siegwart · Hermann Blum · Cesar Cadena

[ West Building Exhibit Halls ABC ]

An increasing amount of applications rely on data-driven models that are deployed for perception tasks across a sequence of scenes. Due to the mismatch between training and deployment data, adapting the model on the new scenes is often crucial to obtain good performance. In this work, we study continual multi-scene adaptation for the task of semantic segmentation, assuming that no ground-truth labels are available during deployment and that performance on the previous scenes should be maintained. We propose training a Semantic-NeRF network for each scene by fusing the predictions of a segmentation model and then using the view-consistent rendered semantic labels as pseudo-labels to adapt the model. Through joint training with the segmentation model, the Semantic-NeRF model effectively enables 2D-3D knowledge transfer. Furthermore, due to its compact size, it can be stored in a long-term memory and subsequently used to render data from arbitrary viewpoints to reduce forgetting. We evaluate our approach on ScanNet, where we outperform both a voxel-based baseline and a state-of-the-art unsupervised domain adaptation method.

Poster
Feng Li · Hao Zhang · Huaizhe Xu · Shilong Liu · Lei Zhang · Lionel M. Ni · Heung-Yeung Shum

[ West Building Exhibit Halls ABC ]

In this paper we present Mask DINO, a unified object detection and segmentation framework. Mask DINO extends DINO (DETR with Improved Denoising Anchor Boxes) by adding a mask prediction branch which supports all image segmentation tasks (instance, panoptic, and semantic). It makes use of the query embeddings from DINO to dot-product a high-resolution pixel embedding map to predict a set of binary masks. Some key components in DINO are extended for segmentation through a shared architecture and training process. Mask DINO is simple, efficient, scalable, and benefits from joint large-scale detection and segmentation datasets. Our experiments show that Mask DINO significantly outperforms all existing specialized segmentation methods, both on a ResNet-50 backbone and a pre-trained model with SwinL backbone. Notably, Mask DINO establishes the best results to date on instance segmentation (54.5 AP on COCO), panoptic segmentation (59.4 PQ on COCO), and semantic segmentation (60.8 mIoU on ADE20K) among models under one billion parameters. We will release the code after the blind review.

Poster
Hengcan Shi · Munawar Hayat · Jianfei Cai

[ West Building Exhibit Halls ABC ]

Effectively encoding multi-scale contextual information is crucial for accurate semantic segmentation. Most of the existing transformer-based segmentation models combine features across scales without any selection, where features on sub-optimal scales may degrade segmentation outcomes. Leveraging from the inherent properties of Vision Transformers, we propose a simple yet effective module, Transformer Scale Gate (TSG), to optimally combine multi-scale features. TSG exploits cues in self and cross attentions in Vision Transformers for the scale selection. TSG is a highly flexible plug-and-play module, and can easily be incorporated with any encoder-decoder-based hierarchical vision Transformer architecture. Extensive experiments on the Pascal Context, ADE20K and Cityscapes datasets demonstrate that our feature selection strategy achieves consistent gains.

Poster
Wei Huang · Chang Chen · Yong Li · Jiacheng Li · Cheng Li · Fenglong Song · Youliang Yan · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Existing semantic segmentation methods improve generalization capability, by regularizing various images to a canonical feature space. While this process contributes to generalization, it weakens the representation inevitably. In contrast to existing methods, we instead utilize the difference between images to build a better representation space, where the distinct style features are extracted and stored as the bases of representation. Then, the generalization to unseen image styles is achieved by projecting features to this known space. Specifically, we realize the style projection as a weighted combination of stored bases, where the similarity distances are adopted as the weighting factors. Based on the same concept, we extend this process to the decision part of model and promote the generalization of semantic prediction. By measuring the similarity distances to semantic bases (i.e., prototypes), we replace the common deterministic prediction with semantic clustering. Comprehensive experiments demonstrate the advantage of proposed method to the state of the art, up to 3.6% mIoU improvement in average on unseen scenarios.

Poster
Shiqi Huang · Tingfa Xu · Ning Shen · Feng Mu · Jianan Li

[ West Building Exhibit Halls ABC ]

The existing few-shot medical segmentation networks share the same practice that the more prototypes, the better performance. This phenomenon can be theoretically interpreted in Vector Quantization (VQ) view: the more prototypes, the more clusters are separated from pixel-wise feature points distributed over the full space. However, as we further think about few-shot segmentation with this perspective, it is found that the clusterization of feature points and the adaptation to unseen tasks have not received enough attention. Motivated by the observation, we propose a learning VQ mechanism consisting of grid-format VQ (GFVQ), self-organized VQ (SOVQ) and residual oriented VQ (ROVQ). To be specific, GFVQ generates the prototype matrix by averaging square grids over the spatial extent, which uniformly quantizes the local details; SOVQ adaptively assigns the feature points to different local classes and creates a new representation space where the learnable local prototypes are updated with a global view; ROVQ introduces residual information to fine-tune the aforementioned learned local prototypes without re-training, which benefits the generalization performance for the irrelevance to the training task. We empirically show that our VQ framework yields the state-of-the-art performance over abdomen, cardiac and prostate MRI datasets and expect this work will provoke a rethink of …

Poster
Lanyun Zhu · Tianrun Chen · Jianxiong Yin · Simon See · Jun Liu

[ West Building Exhibit Halls ABC ]

Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven hand-crafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6-stage setting on Pascal-VOC 2012.

Poster
Lixiang Ru · Heliang Zheng · Yibing Zhan · Bo Du

[ West Building Exhibit Halls ABC ]

Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the local structure perception of CNN, CAM usually cannot identify the integral object regions. Though the recent Vision Transformer (ViT) can remedy this flaw, we observe it also brings the over-smoothing issue, ie, the final patch tokens incline to be uniform. In this work, we propose Token Contrast (ToCo) to address this issue and further explore the virtue of ViT for WSSS. Firstly, motivated by the observation that intermediate layers in ViT can still retain semantic diversity, we designed a Patch Token Contrast module (PTC). PTC supervises the final patch tokens with the pseudo token relations derived from intermediate layers, allowing them to align the semantic regions and thus yield more accurate CAM. Secondly, to further differentiate the low-confidence regions in CAM, we devised a Class Token Contrast module (CTC) inspired by the fact that class tokens in ViT can capture high-level semantics. CTC facilitates the representation consistency between uncertain local regions and global objects by contrasting their class tokens. Experiments on the PASCAL VOC and MS COCO datasets show the proposed ToCo can remarkably surpass other single-stage competitors and …

Poster
Rixin Zhou · Jiafu Wei · Qian Zhang · Ruihua Qi · Xi Yang · Chuntao Li

[ West Building Exhibit Halls ABC ]

The archaeological dating of bronze dings has played a critical role in the study of ancient Chinese history. Current archaeology depends on trained experts to carry out bronze dating, which is time-consuming and labor-intensive. For such dating, in this study, we propose a learning-based approach to integrate advanced deep learning techniques and archaeological knowledge. To achieve this, we first collect a large-scale image dataset of bronze dings, which contains richer attribute information than other existing fine-grained datasets. Second, we introduce a multihead classifier and a knowledge-guided relation graph to mine the relationship between attributes and the ding era. Third, we conduct comparison experiments with various existing methods, the results of which show that our dating method achieves a state-of-the-art performance. We hope that our data and applied networks will enrich fine-grained classification research relevant to other interdisciplinary areas of expertise. The dataset and source code used are included in our supplementary materials, and will be open after submission owing to the anonymity policy. Source codes and data are available at: https://github.com/zhourixin/bronze-Ding.

Poster
Xiaoyang Wang · Bingfeng Zhang · Limin Yu · Jimin Xiao

[ West Building Exhibit Halls ABC ]

Recent semi-supervised semantic segmentation methods combine pseudo labeling and consistency regularization to enhance model generalization from perturbation-invariant training. In this work, we argue that adequate supervision can be extracted directly from the geometry of feature space. Inspired by density-based unsupervised clustering, we propose to leverage feature density to locate sparse regions within feature clusters defined by label and pseudo labels. The hypothesis is that lower-density features tend to be under-trained compared with those densely gathered. Therefore, we propose to apply regularization on the structure of the cluster by tackling the sparsity to increase intra-class compactness in feature space. With this goal, we present a Density-Guided Contrastive Learning (DGCL) strategy to push anchor features in sparse regions toward cluster centers approximated by high-density positive keys. The heart of our method is to estimate feature density which is defined as neighbor compactness. We design a multi-scale density estimation module to obtain the density from multiple nearest-neighbor graphs for robust density modeling. Moreover, a unified training framework is proposed to combine label-guided self-training and density-guided geometry regularization to form complementary supervision on unlabeled data. Experimental results on PASCAL VOC and Cityscapes under various semi-supervised settings demonstrate that our proposed method achieves state-of-the-art performances.

Poster
Xudong Wang · Rohit Girdhar · Stella X. Yu · Ishan Misra

[ West Building Exhibit Halls ABC ]

We propose Cut-and-LEaRn (CutLER), a simple approach for training unsupervised object detection and segmentation models. We leverage the property of self-supervised models to ‘discover’ objects without supervision and amplify it to train a state-of-the-art localization model without any human labels. CutLER first uses our proposed MaskCut approach to generate coarse masks for multiple objects in an image, and then learns a detector on these masks using our robust loss function. We further improve performance by self-training the model on its predictions. Compared to prior work, CutLER is simpler, compatible with different detection architectures, and detects multiple objects. CutLER is also a zero-shot unsupervised detector and improves detection performance AP_50 by over 2.7× on 11 benchmarks across domains like video frames, paintings, sketches, etc. With finetuning, CutLER serves as a low-shot detector surpassing MoCo-v2 by 7.3% AP^box and 6.6% AP^mask on COCO when training with 5% labels.

Poster
Zhaozheng Chen · Qianru Sun

[ West Building Exhibit Halls ABC ]

Extracting class activation maps (CAM) from a classification model often results in poor coverage on foreground objects, i.e., only the discriminative region (e.g., the “head” of “sheep”) is recognized and the rest (e.g., the “leg” of “sheep”) mistakenly as background. The crux behind is that the weight of the classifier (used to compute CAM) captures only the discriminative features of objects. We tackle this by introducing a new computation method for CAM that explicitly captures non-discriminative features as well, thereby expanding CAM to cover whole objects. Specifically, we omit the last pooling layer of the classification model, and perform clustering on all local features of an object class, where “local” means “at a spatial pixel position”. We call the resultant K cluster centers local prototypes - represent local semantics like the “head”, “leg”, and “body” of “sheep”. Given a new image of the class, we compare its unpooled features to every prototype, derive K similarity matrices, and then aggregate them into a heatmap (i.e., our CAM). Our CAM thus captures all local features of the class without discrimination. We evaluate it in the challenging tasks of weakly-supervised semantic segmentation (WSSS), and plug it in multiple state-of-the-art WSSS methods, such as …

Poster
Tianheng Cheng · Xinggang Wang · Shaoyu Chen · Qian Zhang · Wenyu Liu

[ West Building Exhibit Halls ABC ]

Labeling objects with pixel-wise segmentation requires a huge amount of human labor compared to bounding boxes. Most existing methods for weakly supervised instance segmentation focus on designing heuristic losses with priors from bounding boxes. While, we find that box-supervised methods can produce some fine segmentation masks and we wonder whether the detectors could learn from these fine masks while ignoring low-quality masks. To answer this question, we present BoxTeacher, an efficient and end-to-end training framework for high-performance weakly supervised instance segmentation, which leverages a sophisticated teacher to generate high-quality masks as pseudo labels. Considering the massive noisy masks hurt the training, we present a mask-aware confidence score to estimate the quality of pseudo masks and propose the noise-aware pixel loss and noise-reduced affinity loss to adaptively optimize the student with pseudo masks. Extensive experiments can demonstrate the effectiveness of the proposed BoxTeacher. Without bells and whistles, BoxTeacher remarkably achieves 35.0 mask AP and 36.5 mask AP with ResNet-50 and ResNet-101 respectively on the challenging COCO dataset, which outperforms the previous state-of-the-art methods by a significant margin and bridges the gap between box-supervised and mask-supervised methods. The code and models will be available later.

Poster
Xiao Guo · Xiaohong Liu · Zhiyuan Ren · Steven Grosz · Iacopo Masi · Xiaoming Liu

[ West Building Exhibit Halls ABC ]

Differences in forgery attributes of images generated in CNN-synthesized and image-editing domains are large, and such differences make a unified image forgery detection and localization (IFDL) challenging. To this end, we present a hierarchical fine-grained formulation for IFDL representation learning. Specifically, we first represent forgery attributes of a manipulated image with multiple labels at different levels. Then we perform fine-grained classification at these levels using the hierarchical dependency between them. As a result, the algorithm is encouraged to learn both comprehensive features and inherent hierarchical nature of different forgery attributes, thereby improving the IFDL representation. Our proposed IFDL framework contains three components: multi-branch feature extractor, localization and classification modules. Each branch of the feature extractor learns to classify forgery attributes at one level, while localization and classification modules segment the pixel-level forgery region and detect image-level forgery, respectively. Lastly, we construct a hierarchical fine-grained dataset to facilitate our study. We demonstrate the effectiveness of our method on 7 different benchmarks, for both tasks of IFDL and forgery attribute classification. Our source code and dataset can be found at https://github.com/CHELSEA234/HiFi_IFDL

Poster
Pei Wang · Nuno Vasconcelos

[ West Building Exhibit Halls ABC ]

Image recognition on expert domains is usually fine-grained and requires expert labeling, which is costly. This limits dataset sizes and the accuracy of learning systems. To address this challenge, we consider annotating expert data with crowdsourcing. This is denoted as PrOfeSsional lEvel cRowd (POSER) annotation. A new approach, based on semi-supervised learning (SSL) and denoted as SSL with human filtering (SSL-HF) is proposed. It is a human-in-the-loop SSL method, where crowd-source workers act as filters of pseudo-labels, replacing the unreliable confidence thresholding used by state-of-the-art SSL methods. To enable annotation by non-experts, classes are specified implicitly, via positive and negative sets of examples and augmented with deliberative explanations, which highlight regions of class ambiguity. In this way, SSL-HF leverages the strong low-shot learning and confidence estimation ability of humans to create an intuitive but effective labeling experience. Experiments show that SSL-HF significantly outperforms various alternative approaches in several benchmarks.

Poster
Oriane Siméoni · Chloé Sekkat · Gilles Puy · Antonín Vobecký · Éloi Zablocki · Patrick Pérez

[ West Building Exhibit Halls ABC ]

Recent advances in self-supervised visual representation learning have paved the way for unsupervised methods tackling tasks such as object discovery and instance segmentation. However, discovering objects in an image with no supervision is a very hard task; what are the desired objects, when to separate them into parts, how many are there, and of what classes? The answers to these questions depend on the tasks and datasets of evaluation. In this work, we take a different approach and propose to look for the background instead. This way, the salient objects emerge as a by-product without any strong assumption on what an object should be. We propose FOUND, a simple model made of a single conv 1x1 initialized with coarse background masks extracted from self-supervised patch-based representations. After fast training and refining these seed masks, the model reaches state-of-the-art results on unsupervised saliency detection and object discovery benchmarks. Moreover, we show that our approach yields good results in the unsupervised semantic segmentation retrieval task. The code to reproduce our results is available at https://github.com/valeoai/FOUND.

Poster
Enrico Fini · Pietro Astolfi · Karteek Alahari · Xavier Alameda-Pineda · Julien Mairal · Moin Nabi · Elisa Ricci

[ West Building Exhibit Halls ABC ]

Self-supervised learning models have been shown to learn rich visual representations without requiring human annotations. However, in many real-world scenarios, labels are partially available, motivating a recent line of work on semi-supervised methods inspired by self-supervised principles. In this paper, we propose a conceptually simple yet empirically powerful approach to turn clustering-based self-supervised methods such as SwAV or DINO into semi-supervised learners. More precisely, we introduce a multi-task framework merging a supervised objective using ground-truth labels and a self-supervised objective relying on clustering assignments with a single cross-entropy loss. This approach may be interpreted as imposing the cluster centroids to be class prototypes. Despite its simplicity, we provide empirical evidence that our approach is highly effective and achieves state-of-the-art performance on CIFAR100 and ImageNet.

Poster
Henri De Plaen · Pierre-François De Plaen · Johan A. K. Suykens · Marc Proesmans · Tinne Tuytelaars · Luc Van Gool

[ West Building Exhibit Halls ABC ]

During training, supervised object detection tries to correctly match the predicted bounding boxes and associated classification scores to the ground truth. This is essential to determine which predictions are to be pushed towards which solutions, or to be discarded. Popular matching strategies include matching to the closest ground truth box (mostly used in combination with anchors), or matching via the Hungarian algorithm (mostly used in anchor-free methods). Each of these strategies comes with its own properties, underlying losses, and heuristics. We show how Unbalanced Optimal Transport unifies these different approaches and opens a whole continuum of methods in between. This allows for a finer selection of the desired properties. Experimentally, we show that training an object detection model with Unbalanced Optimal Transport is able to reach the state-of-the-art both in terms of Average Precision and Average Recall as well as to provide a faster initial convergence. The approach is well suited for GPU implementation, which proves to be an advantage for large-scale models.

Poster
Jiawei Ma · Yulei Niu · Jincheng Xu · Shiyuan Huang · Guangxing Han · Shih-Fu Chang

[ West Building Exhibit Halls ABC ]

Generalized few-shot object detection aims to achieve precise detection on both base classes with abundant annotations and novel classes with limited training data. Existing approaches enhance few-shot generalization with the sacrifice of base-class performance, or maintain high precision in base-class detection with limited improvement in novel-class adaptation. In this paper, we point out the reason is insufficient Discriminative feature learning for all of the classes. As such, we propose a new training framework, DiGeo, to learn Geometry-aware features of inter-class separation and intra-class compactness. To guide the separation of feature clusters, we derive an offline simplex equiangular tight frame (ETF) classifier whose weights serve as class centers and are maximally and equally separated. To tighten the cluster for each class, we include adaptive class-specific margins into the classification loss and encourage the features close to the class centers. Experimental studies on two few-shot benchmark datasets (PASCAL VOC, MSCOCO) and one long-tail dataset (LVIS) demonstrate that, with a single model, our method can effectively improve generalization on novel classes without hurting the detection of base classes.

Poster
Vidit Vidit · Martin Engilberge · Mathieu Salzmann

[ West Building Exhibit Halls ABC ]

Single Domain Generalization (SDG) tackles the problem of training a model on a single source domain so that it generalizes to any unseen target domain. While this has been well studied for image classification, the literature on SDG object detection remains almost non-existent. To address the challenges of simultaneously learning robust object localization and representation, we propose to leverage a pre-trained vision-language model to introduce semantic domain concepts via textual prompts. We achieve this via a semantic augmentation strategy acting on the features extracted by the detector backbone, as well as a text-based classification loss. Our experiments evidence the benefits of our approach, outperforming by 10% the only existing SDG object detection method, Single-DGOD[49], on their own diverse weather-driving benchmark.

Poster
Wenteng Liang · Feng Xue · Yihao Liu · Guofeng Zhong · Anlong Ming

[ West Building Exhibit Halls ABC ]

The recently proposed open-world object and open-set detection have achieved a breakthrough in finding never-seen-before objects and distinguishing them from known ones. However, their studies on knowledge transfer from known classes to unknown ones are not deep enough, resulting in the scanty capability for detecting unknowns hidden in the background. In this paper, we propose the unknown sniffer (UnSniffer) to find both unknown and known objects. Firstly, the generalized object confidence (GOC) score is introduced, which only uses known samples for supervision and avoids improper suppression of unknowns in the background. Significantly, such confidence score learned from known objects can be generalized to unknown ones. Additionally, we propose a negative energy suppression loss to further suppress the non-object samples in the background. Next, the best box of each unknown is hard to obtain during inference due to lacking their semantic information in training. To solve this issue, we introduce a graph-based determination scheme to replace hand-designed non-maximum suppression (NMS) post-processing. Finally, we present the Unknown Object Detection Benchmark, the first publicly benchmark that encompasses precision evaluation for unknown detection to our knowledge. Experiments show that our method is far better than the existing state-of-the-art methods. Code is available at: https://github.com/Went-Liang/UnSniffer.

Poster
Xinjiang Wang · Xingyi Yang · Shilong Zhang · Yijiang Li · Litong Feng · Shijie Fang · Chengqi Lyu · Kai Chen · Wayne Zhang

[ West Building Exhibit Halls ABC ]

In this study, we dive deep into the inconsistency of pseudo targets in semi-supervised object detection (SSOD). Our core observation is that the oscillating pseudo-targets undermine the training of an accurate detector. It injects noise into the student’s training, leading to severe overfitting problems. Therefore, we propose a systematic solution, termed NAME, to reduce the inconsistency. First, adaptive anchor assignment~(ASA) substitutes the static IoU-based strategy, which enables the student network to be resistant to noisy pseudo-bounding boxes. Then we calibrate the subtask predictions by designing a 3D feature alignment module~(FAM-3D). It allows each classification feature to adaptively query the optimal feature vector for the regression task at arbitrary scales and locations. Lastly, a Gaussian Mixture Model (GMM) dynamically revises the score threshold of pseudo-bboxes, which stabilizes the number of ground truths at an early stage and remedies the unreliable supervision signal during training. NAME provides strong results on a large range of SSOD evaluations. It achieves 40.0 mAP with ResNet-50 backbone given only 10% of annotated MS-COCO data, which surpasses previous baselines using pseudo labels by around 3 mAP. When trained on fully annotated MS-COCO with additional unlabeled data, the performance further increases to 47.7 mAP. Our code is available …

Poster
Xiaolin Song · Binghui Chen · Pengyu Li · Jun-Yan He · Biao Wang · Yifeng Geng · Xuansong Xie · Honggang Zhang

[ West Building Exhibit Halls ABC ]

End-to-end pedestrian detection focuses on training a pedestrian detection model via discarding the Non-Maximum Suppression (NMS) post-processing. Though a few methods have been explored, most of them still suffer from longer training time and more complex deployment, which cannot be deployed in the actual industrial applications. In this paper, we intend to bridge this gap and propose an Optimal Proposal Learning (OPL) framework for deployable end-to-end pedestrian detection. Specifically, we achieve this goal by using CNN-based light detector and introducing two novel modules, including a Coarse-to-Fine (C2F) learning strategy for proposing precise positive proposals for the Ground-Truth (GT) instances by reducing the ambiguity of sample assignment/output in training/testing respectively, and a Completed Proposal Network (CPN) for producing extra information compensation to further recall the hard pedestrian samples. Extensive experiments are conducted on CrowdHuman, TJU-Ped and Caltech, and the results show that our proposed OPL method significantly outperforms the competing methods.

Poster
Yipeng Gao · Kun-Yu Lin · Junkai Yan · Yaowei Wang · Wei-Shi Zheng

[ West Building Exhibit Halls ABC ]

In this work, we study few-shot domain adaptive object detection (FSDAOD), where only a few target labeled images are available for training in addition to sufficient source labeled images. Critically, in FSDAOD, the data-scarcity in the target domain leads to an extreme data imbalance between the source and target domains, which potentially causes over-adaptation in traditional feature alignment. To address the data imbalance problem, we propose an asymmetric adaptation paradigm, namely AsyFOD, which leverages the source and target instances from different perspectives. Specifically, by using target distribution estimation, the AsyFOD first identifies the target-similar source instances, which serves for augmenting the limited target instances. Then, we conduct asynchronous alignment between target-dissimilar source instances and augmented target instances, which is simple yet effective for alleviating the over-adaptation. Extensive experiments demonstrate that the proposed AsyFOD outperforms all state-of-the-art methods on four FSDAOD benchmarks with various environmental variances, e.g., 3.1% mAP improvement on Cityscapes-to-FoggyCityscapes and 2.9% mAP increase on Sim10k-to-Cityscapes. The code is available at https://github.com/Hlings/AsyFOD.

Poster
Chenxi Zheng · Bangzhen Liu · Huaidong Zhang · Xuemiao Xu · Shengfeng He

[ West Building Exhibit Halls ABC ]

Image generation relies on massive training data that can hardly produce diverse images of an unseen category according to a few examples. In this paper, we address this dilemma by projecting sparse few-shot samples into a continuous latent space that can potentially generate infinite unseen samples. The rationale behind is that we aim to locate a centroid latent position in a conditional StyleGAN, where the corresponding output image on that centroid can maximize the similarity with the given samples. Although the given samples are unseen for the conditional StyleGAN, we assume the neighboring latent subspace around the centroid belongs to the novel category, and therefore introduce two latent subspace optimization objectives. In the first one we use few-shot samples as positive anchors of the novel class, and adjust the StyleGAN to produce the corresponding results with the new class label condition. The second objective is to govern the generation process from the other way around, by altering the centroid and its surrounding latent subspace for a more precise generation of the novel class. These reciprocal optimization objectives inject a novel class into the StyleGAN latent subspace, and therefore new unseen samples can be easily produced by sampling images from it. …

Poster
Fan Lu · Kai Zhu · Wei Zhai · Kecheng Zheng · Yang Cao

[ West Building Exhibit Halls ABC ]

Semantically coherent out-of-distribution (SCOOD) detection aims to discern outliers from the intended data distribution with access to unlabeled extra set. The coexistence of in-distribution and out-of-distribution samples will exacerbate the model overfitting when no distinction is made. To address this problem, we propose a novel uncertainty-aware optimal transport scheme. Our scheme consists of an energy-based transport (ET) mechanism that estimates the fluctuating cost of uncertainty to promote the assignment of semantic-agnostic representation, and an inter-cluster extension strategy that enhances the discrimination of semantic property among different clusters by widening the corresponding margin distance. Furthermore, a T-energy score is presented to mitigate the magnitude gap between the parallel transport and classifier branches. Extensive experiments on two standard SCOOD benchmarks demonstrate the above-par OOD detection performance, outperforming the state-of-the-art methods by a margin of 27.69% and 34.4% on FPR@95, respectively.

Poster
Ronald Xie · Kuan Pang · Gary D. Bader · Bo Wang

[ West Building Exhibit Halls ABC ]

Accurate segmentation of cellular images remains an elusive task due to the intrinsic variability in morphology of biological structures. Complete manual segmentation is unfeasible for large datasets, and while supervised methods have been proposed to automate segmentation, they often rely on manually generated ground truths which are especially challenging and time consuming to generate in biology due to the requirement of domain expertise. Furthermore, these methods have limited generalization capacity, requiring additional manual labels to be generated for each dataset and use case. We introduce MAESTER (Masked AutoEncoder guided SegmenTation at pixEl Resolution), a self-supervised method for accurate, subcellular structure segmentation at pixel resolution. MAESTER treats segmentation as a representation learning and clustering problem. Specifically, MAESTER learns semantically meaningful token representations of multi-pixel image patches while simultaneously maintaining a sufficiently large field of view for contextual learning. We also develop a cover-and-stride inference strategy to achieve pixel-level subcellular structure segmentation. We evaluated MAESTER on a publicly available volumetric electron microscopy (VEM) dataset of primary mouse pancreatic islets beta cells and achieved upwards of 29.1% improvement over state-of-the-art under the same evaluation criteria. Furthermore, our results are competitive against supervised methods trained on the same tasks, closing the gap between self-supervised …

Poster
Heng Cai · Shumeng Li · Lei Qi · Qian Yu · Yinghuan Shi · Yang Gao

[ West Building Exhibit Halls ABC ]

Recent trends in semi-supervised learning have significantly boosted the performance of 3D semi-supervised medical image segmentation. Compared with 2D images, 3D medical volumes involve information from different directions, e.g., transverse, sagittal, and coronal planes, so as to naturally provide complementary views. These complementary views and the intrinsic similarity among adjacent 3D slices inspire us to develop a novel annotation way and its corresponding semi-supervised model for effective segmentation. Specifically, we firstly propose the orthogonal annotation by only labeling two orthogonal slices in a labeled volume, which significantly relieves the burden of annotation. Then, we perform registration to obtain the initial pseudo labels for sparsely labeled volumes. Subsequently, by introducing unlabeled volumes, we propose a dual-network paradigm named Dense-Sparse Co-training (DeSCO) that exploits dense pseudo labels in early stage and sparse labels in later stage and meanwhile forces consistent output of two networks. Experimental results on three benchmark datasets validated our effectiveness in performance and efficiency in annotation. For example, with only 10 annotated slices, our method reaches a Dice up to 86.93% on KiTS19 dataset.

Poster
Donghao Zhou · Chunbin Gu · Junde Xu · Furui Liu · Qiong Wang · Guangyong Chen · Pheng-Ann Heng

[ West Building Exhibit Halls ABC ]

In biological research, fluorescence staining is a key technique to reveal the locations and morphology of subcellular structures. However, it is slow, expensive, and harmful to cells. In this paper, we model it as a deep learning task termed subcellular structure prediction (SSP), aiming to predict the 3D fluorescent images of multiple subcellular structures from a 3D transmitted-light image. Unfortunately, due to the limitations of current biotechnology, each image is partially labeled in SSP. Besides, naturally, subcellular structures vary considerably in size, which causes the multi-scale issue of SSP. To overcome these challenges, we propose Re-parameterizing Mixture-of-Diverse-Experts (RepMode), a network that dynamically organizes its parameters with task-aware priors to handle specified single-label prediction tasks. In RepMode, the Mixture-of-Diverse-Experts (MoDE) block is designed to learn the generalized parameters for all tasks, and gating re-parameterization (GatRep) is performed to generate the specialized parameters for each task, by which RepMode can maintain a compact practical topology exactly like a plain network, and meanwhile achieves a powerful theoretical topology. Comprehensive experiments show that RepMode can achieve state-of-the-art overall performance in SSP.

Poster
Shahira Abousamra · Rajarsi Gupta · Tahsin Kurc · Dimitris Samaras · Joel Saltz · Chao Chen

[ West Building Exhibit Halls ABC ]

In digital pathology, the spatial context of cells is important for cell classification, cancer diagnosis and prognosis. To model such complex cell context, however, is challenging. Cells form different mixtures, lineages, clusters and holes. To model such structural patterns in a learnable fashion, we introduce several mathematical tools from spatial statistics and topological data analysis. We incorporate such structural descriptors into a deep generative model as both conditional inputs and a differentiable loss. This way, we are able to generate high quality multi-class cell layouts for the first time. We show that the topology-rich cell layouts can be used for data augmentation and improve the performance of downstream tasks such as cell classification.

Poster
Mingjie Li · Bingqian Lin · Zicong Chen · Haokun Lin · Xiaodan Liang · Xiaojun Chang

[ West Building Exhibit Halls ABC ]

Automatic radiology reporting has great clinical potential to relieve radiologists from heavy workloads and improve diagnosis interpretation. Recently, researchers have enhanced data-driven neural networks with medical knowledge graphs to eliminate the severe visual and textual bias in this task. The structures of such graphs are exploited by using the clinical dependencies formed by the disease topic tags via general knowledge and usually do not update during the training process. Consequently, the fixed graphs can not guarantee the most appropriate scope of knowledge and limit the effectiveness. To address the limitation, we propose a knowledge graph with Dynamic structure and nodes to facilitate chest X-ray report generation with Contrastive Learning, named DCL. In detail, the fundamental structure of our graph is pre-constructed from general knowledge. Then we explore specific knowledge extracted from the retrieved reports to add additional nodes or redefine their relations in a bottom-up manner. Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation. Finally, this paper introduces Image-Report Contrastive and Image-Report Matching losses to better represent visual features and textual information. Evaluated on IU-Xray and MIMIC-CXR datasets, our DCL outperforms previous state-of-the-art models on these two …

Poster
Mingu Kang · Heon Song · Seonwook Park · Donggeun Yoo · Sérgio Pereira

[ West Building Exhibit Halls ABC ]

Computational pathology can lead to saving human lives, but models are annotation hungry and pathology images are notoriously expensive to annotate. Self-supervised learning has shown to be an effective method for utilizing unlabeled data, and its application to pathology could greatly benefit its downstream tasks. Yet, there are no principled studies that compare SSL methods and discuss how to adapt them for pathology. To address this need, we execute the largest-scale study of SSL pre-training on pathology image data, to date. Our study is conducted using 4 representative SSL methods on diverse downstream tasks. We establish that large-scale domain-aligned pre-training in pathology consistently out-performs ImageNet pre-training in standard SSL settings such as linear and fine-tuning evaluations, as well as in low-label regimes. Moreover, we propose a set of domain-specific techniques that we experimentally show leads to a performance boost. Lastly, for the first time, we apply SSL to the challenging task of nuclei instance segmentation and show large and consistent performance improvements under diverse settings.

Poster
Kangning Liu · Weicheng Zhu · Yiqiu Shen · Sheng Liu · Narges Razavian · Krzysztof J. Geras · Carlos Fernandez-Granda

[ West Building Exhibit Halls ABC ]

Learning representations for individual instances when only bag-level labels are available is a fundamental challenge in multiple instance learning (MIL). Recent works have shown promising results using contrastive self-supervised learning (CSSL), which learns to push apart representations corresponding to two different randomly-selected instances. Unfortunately, in real-world applications such as medical image classification, there is often class imbalance, so randomly-selected instances mostly belong to the same majority class, which precludes CSSL from learning inter-class differences. To address this issue, we propose a novel framework, Iterative Self-paced Supervised Contrastive Learning for MIL Representations (ItS2CLR), which improves the learned representation by exploiting instance-level pseudo labels derived from the bag-level labels. The framework employs a novel self-paced sampling strategy to ensure the accuracy of pseudo labels. We evaluate ItS2CLR on three medical datasets, showing that it improves the quality of instance-level pseudo labels and representations, and outperforms existing MIL methods in terms of both bag and instance level accuracy. Code is available at https://github.com/Kangningthu/ItS2CLR

Poster
Rajshekhar Das · Yonatan Dukler · Avinash Ravichandran · Ashwin Swaminathan

[ West Building Exhibit Halls ABC ]

Prompt learning is an efficient approach to adapt transformers by inserting learnable set of parameters into the input and intermediate representations of a pre-trained model. In this work, we present Expressive Prompts with Residuals (EXPRES) which modifies the prompt learning paradigm specifically for effective adaptation of vision transformers (ViT). Out method constructs downstream representations via learnable “output” tokens, that are akin to the learned class tokens of the ViT. Further for better steering of the downstream representation processed by the frozen transformer, we introduce residual learnable tokens that are added to the output of various computations. We apply EXPRES for image classification, few shot learning, and semantic segmentation, and show our method is capable of achieving state of the art prompt tuning on 3/3 categories of the VTAB benchmark. In addition to strong performance, we observe that our approach is an order of magnitude more prompt efficient than existing visual prompting baselines. We analytically show the computational benefits of our approach over weight space adaptation techniques like finetuning. Lastly we systematically corroborate the architectural design of our method via a series of ablation experiments.

Poster
Zihan Zhang · Xiang Xiang

[ West Building Exhibit Halls ABC ]

In machine learning, it is often observed that standard training outputs anomalously high confidence for both in-distribution (ID) and out-of-distribution (OOD) data. Thus, the ability to detect OOD samples is critical to the model deployment. An essential step for OOD detection is post-hoc scoring. MaxLogit is one of the simplest scoring functions which uses the maximum logits as OOD score. To provide a new viewpoint to study the logit-based scoring function, we reformulate the logit into cosine similarity and logit norm and propose to use MaxCosine and MaxNorm. We empirically find that MaxCosine is a core factor in the effectiveness of MaxLogit. And the performance of MaxLogit is encumbered by MaxNorm. To tackle the problem, we propose the Decoupling MaxLogit (DML) for flexibility to balance MaxCosine and MaxNorm. To further embody the core of our method, we extend DML to DML+ based on the new insights that fewer hard samples and compact feature space are the key components to make logit-based methods effective. We demonstrate the effectiveness of our logit-based OOD detection methods on CIFAR-10, CIFAR-100 and ImageNet and establish state-of-the-art performance.

Poster
Zixuan Ding · Ao Wang · Hui Chen · Qiang Zhang · Pengzhang Liu · Yongjun Bao · Weipeng Yan · Jungong Han

[ West Building Exhibit Halls ABC ]

Multi-label recognition (MLR) with incomplete labels is very challenging. Recent works strive to explore the image-to-label correspondence in the vision-language model, i.e., CLIP, to compensate for insufficient annotations. In spite of promising performance, they generally overlook the valuable prior about the label-to-label correspondence. In this paper, we advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior about the label-to-label correspondence via a semantic prior prompter. We then present a novel Semantic Correspondence Prompt Network (SCPNet), which can thoroughly explore the structured semantic prior. A Prior-Enhanced Self-Supervised Learning method is further introduced to enhance the use of the prior. Comprehensive experiments and analyses on several widely used benchmark datasets show that our method significantly outperforms existing methods on all datasets, well demonstrating the effectiveness and the superiority of our method. Our code will be available at https://github.com/jameslahm/SCPNet.

Poster
Youngwook Kim · Jae Myung Kim · Jieun Jeong · Cordelia Schmid · Zeynep Akata · Jungwoo Lee

[ West Building Exhibit Halls ABC ]

Due to the expensive costs of collecting labels in multi-label classification datasets, partially annotated multi-label classification has become an emerging field in computer vision. One baseline approach to this task is to assume unobserved labels as negative labels, but this assumption induces label noise as a form of false negative. To understand the negative impact caused by false negative labels, we study how these labels affect the model’s explanation. We observe that the explanation of two models, trained with full and partial labels each, highlights similar regions but with different scaling, where the latter tends to have lower attribution scores. Based on these findings, we propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels. Even with the conceptually simple approach, the multi-label classification performance improves by a large margin in three different datasets on a single positive label setting and one on a large-scale partial label setting. Code is available at https://github.com/youngwk/BridgeGapExplanationPAMC.

Poster
Ioannis Maniadis Metaxas · Georgios Tzimiropoulos · Ioannis Patras

[ West Building Exhibit Halls ABC ]

Clustering has been a major research topic in the field of machine learning, one to which Deep Learning has recently been applied with significant success. However, an aspect of clustering that is not addressed by existing deep clustering methods, is that of efficiently producing multiple, diverse partitionings for a given dataset. This is particularly important, as a diverse set of base clusterings are necessary for consensus clustering, which has been found to produce better and more robust results than relying on a single clustering. To address this gap, we propose DivClust, a diversity controlling loss that can be incorporated into existing deep clustering frameworks to produce multiple clusterings with the desired degree of diversity. We conduct experiments with multiple datasets and deep clustering frameworks and show that: a) our method effectively controls diversity across frameworks and datasets with very small additional computational cost, b) the sets of clusterings learned by DivClust include solutions that significantly outperform single-clustering baselines, and c) using an off-the-shelf consensus clustering algorithm, DivClust produces consensus clustering solutions that consistently outperform single-clustering baselines, effectively improving the performance of the base deep clustering framework.

Poster
Furen Zhuang · Pierre Moulin

[ West Building Exhibit Halls ABC ]

Metric learning requires the identification of far-apart similar pairs and close dissimilar pairs during training, and this is difficult to achieve with unlabeled data because pairs are typically assumed to be similar if they are close. We present a novel metric learning method which circumvents this issue by identifying hard negative pairs as those which obtain dissimilar labels via label propagation (LP), when the edge linking the pair of data is removed in the affinity matrix. In so doing, the negative pairs can be identified despite their proximity, and we are able to utilize this information to significantly improve LP’s ability to identify far-apart positive pairs and close negative pairs. This results in a considerable improvement in semi-supervised metric learning performance as evidenced by recall, precision and Normalized Mutual Information (NMI) performance metrics on Content-based Information Retrieval (CBIR) applications.

Poster
Maria Sofia Bucarelli · Lucas Cassano · Federico Siciliano · Amin Mantrach · Fabrizio Silvestri

[ West Building Exhibit Halls ABC ]

In practical settings, classification datasets are obtained through a labelling process that is usually done by humans. Labels can be noisy as they are obtained by aggregating the different individual labels assigned to the same sample by multiple, and possibly disagreeing, annotators. The inter-rater agreement on these datasets can be measured while the underlying noise distribution to which the labels are subject is assumed to be unknown. In this work, we: (i) show how to leverage the inter-annotator statistics to estimate the noise distribution to which labels are subject; (ii) introduce methods that use the estimate of the noise distribution to learn from the noisy dataset; and (iii) establish generalization bounds in the empirical risk minimization framework that depend on the estimated quantities. We conclude the paper by providing experiments that illustrate our findings.

Poster
Wenbin Li · Zhichen Fan · Jing Huo · Yang Gao

[ West Building Exhibit Halls ABC ]

Novel class discovery (NCD) aims at learning a model that transfers the common knowledge from a class-disjoint labelled dataset to another unlabelled dataset and discovers new classes (clusters) within it. Many methods, as well as elaborate training pipelines and appropriate objectives, have been proposed and considerably boosted performance on NCD tasks. Despite all this, we find that the existing methods do not sufficiently take advantage of the essence of the NCD setting. To this end, in this paper, we propose to model both inter-class and intra-class constraints in NCD based on the symmetric Kullback-Leibler divergence (sKLD). Specifically, we propose an inter-class sKLD constraint to effectively exploit the disjoint relationship between labelled and unlabelled classes, enforcing the separability for different classes in the embedding space. In addition, we present an intra-class sKLD constraint to explicitly constrain the intra-relationship between a sample and its augmentations and ensure the stability of the training process at the same time. We conduct extensive experiments on the popular CIFAR10, CIFAR100 and ImageNet benchmarks and successfully demonstrate that our method can establish a new state of the art and can achieve significant performance improvements, e.g., 3.5%/3.7% clustering accuracy improvements on CIFAR100-50 dataset split under the task-aware/-agnostic evaluation …

Poster
Muli Yang · Liancheng Wang · Cheng Deng · Hanwang Zhang

[ West Building Exhibit Halls ABC ]

Novel Class Discovery (NCD) aims to discover unknown classes without any annotation, by exploiting the transferable knowledge already learned from a base set of known classes. Existing works hold an impractical assumption that the novel class distribution prior is uniform, yet neglect the imbalanced nature of real-world data. In this paper, we relax this assumption by proposing a new challenging task: distribution-agnostic NCD, which allows data drawn from arbitrary unknown class distributions and thus renders existing methods useless or even harmful. We tackle this challenge by proposing a new method, dubbed “Bootstrapping Your Own Prior (BYOP)”, which iteratively estimates the class prior based on the model prediction itself. At each iteration, we devise a dynamic temperature technique that better estimates the class prior by encouraging sharper predictions for less-confident samples. Thus, BYOP obtains more accurate pseudo-labels for the novel samples, which are beneficial for the next training iteration. Extensive experiments show that existing methods suffer from imbalanced class distributions, while BYOP outperforms them by clear margins, demonstrating its effectiveness across various distribution scenarios.

Poster
Tong Wei · Kai Gan

[ West Building Exhibit Halls ABC ]

While long-tailed semi-supervised learning (LTSSL) has received tremendous attention in many real-world classification problems, existing LTSSL algorithms typically assume that the class distributions of labeled and unlabeled data are almost identical. Those LTSSL algorithms built upon the assumption can severely suffer when the class distributions of labeled and unlabeled data are mismatched since they utilize biased pseudo-labels from the model. To alleviate this issue, we propose a new simple method that can effectively utilize unlabeled data of unknown class distributions by introducing the adaptive consistency regularizer (ACR). ACR realizes the dynamic refinery of pseudo-labels for various distributions in a unified formula by estimating the true class distribution of unlabeled data. Despite its simplicity, we show that ACR achieves state-of-the-art performance on a variety of standard LTSSL benchmarks, e.g., an averaged 10% absolute increase of test accuracy against existing algorithms when the class distributions of labeled and unlabeled data are mismatched. Even when the class distributions are identical, ACR consistently outperforms many sophisticated LTSSL algorithms. We carry out extensive ablation studies to tease apart the factors that are most important to ACR’s success. Source code is available at https://github.com/Gank0078/ACR.

Poster
Sheng Zhang · Salman Khan · Zhiqiang Shen · Muzammal Naseer · Guangyi Chen · Fahad Shahbaz Khan

[ West Building Exhibit Halls ABC ]

Although existing semi-supervised learning models achieve remarkable success in learning with unannotated in-distribution data, they mostly fail to learn on unlabeled data sampled from novel semantic classes due to their closed-set assumption. In this work, we target a pragmatic but under-explored Generalized Novel Category Discovery (GNCD) setting. The GNCD setting aims to categorize unlabeled training data coming from known and novel classes by leveraging the information of partially labeled known classes. We propose a two-stage Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem. Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts. First, we propose a discriminative prompt regularization loss to reinforce semantic discriminativeness of prompt-adapted pre-trained vision transformer for refined affinity relationships. Besides, we propose contrastive affinity learning to calibrate semantic representations based on our iterative semi-supervised affinity graph generation method for semantically-enhanced supervision. Extensive experimental evaluation demonstrates that our PromptCAL method is more effective in discovering novel classes even with limited annotations and surpasses the current state-of-the-art on generic and fine-grained benchmarks (e.g., with nearly 11% gain on CUB-200, and 9% on ImageNet-100) on overall …

Poster
Jianqing Xu · Shen Li · Ailin Deng · Miao Xiong · Jiaying Wu · Jiaxiang Wu · Shouhong Ding · Bryan Hooi

[ West Building Exhibit Halls ABC ]

Mean ensemble (i.e. averaging predictions from multiple models) is a commonly-used technique in machine learning that improves the performance of each individual model. We formalize it as feature alignment for ensemble in open-set face recognition and generalize it into Bayesian Ensemble Averaging (BEA) through the lens of probabilistic modeling. This generalization brings up two practical benefits that existing methods could not provide: (1) the uncertainty of a face image can be evaluated and further decomposed into aleatoric uncertainty and epistemic uncertainty, the latter of which can be used as a measure for out-of-distribution detection of faceness; (2) a BEA statistic provably reflects the aleatoric uncertainty of a face image, acting as a measure for face image quality to improve recognition performance. To inherit the uncertainty estimation capability from BEA without the loss of inference efficiency, we propose BEA-KD, a student model to distill knowledge from BEA. BEA-KD mimics the overall behavior of ensemble members and consistently outperforms SOTA knowledge distillation methods on various challenging benchmarks.

Poster
Zhipeng Zhou · Lanqing Li · Peilin Zhao · Pheng-Ann Heng · Wei Gong

[ West Building Exhibit Halls ABC ]

It’s widely acknowledged that deep learning models with flatter minima in its loss landscape tend to generalize better. However, such property is under-explored in deep long-tailed recognition (DLTR), a practical problem where the model is required to generalize equally well across all classes when trained on highly imbalanced label distribution. In this paper, through empirical observations, we argue that sharp minima are in fact prevalent in deep longtailed models, whereas naïve integration of existing flattening operations into long-tailed learning algorithms brings little improvement. Instead, we propose an effective twostage sharpness-aware optimization approach based on the decoupling paradigm in DLTR. In the first stage, both the feature extractor and classifier are trained under parameter perturbations at a class-conditioned scale, which is theoretically motivated by the characteristic radius of flat minima under the PAC-Bayesian framework. In the second stage, we generate adversarial features with classbalanced sampling to further robustify the classifier with the backbone frozen. Extensive experiments on multiple longtailed visual recognition benchmarks show that, our proposed Class-Conditional Sharpness-Aware Minimization (CC-SAM), achieves competitive performance compared to the state-of-the-arts. Code is available at https:// github.com/zzpustc/CC-SAM.

Poster
Yuchen Liu · Yaoming Wang · Yabo Chen · Wenrui Dai · Chenglin Li · Junni Zou · Hongkai Xiong

[ West Building Exhibit Halls ABC ]

Domain Generalization (DG) has achieved great success in generalizing knowledge from source domains to unseen target domains. However, current DG methods rely heavily on labeled source data, which are usually costly and unavailable. Since unlabeled data are far more accessible, we study a more practical unsupervised domain generalization (UDG) problem. Learning invariant visual representation from different views, i.e., contrastive learning, promises well semantic features for in-domain unsupervised learning. However, it fails in cross-domain scenarios. In this paper, we first delve into the failure of vanilla contrastive learning and point out that semantic connectivity is the key to UDG. Specifically, suppressing the intra-domain connectivity and encouraging the intra-class connectivity help to learn the domain-invariant semantic information. Then, we propose a novel unsupervised domain generalization approach, namely Dual Nearest Neighbors contrastive learning with strong Augmentation (DN^2A). Our DN^2A leverages strong augmentations to suppress the intra-domain connectivity and proposes a novel dual nearest neighbors search strategy to find trustworthy cross domain neighbors along with in-domain neighbors to encourage the intra-class connectivity. Experimental results demonstrate that our DN^2A outperforms the state-of-the-art by a large margin, e.g., 12.01% and 13.11% accuracy gain with only 1% labels for linear evaluation on PACS and DomainNet, respectively.

Poster
Vibashan VS · Poojan Oza · Vishal M. Patel

[ West Building Exhibit Halls ABC ]

Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift. Specifically, UDA methods try to align the source and target representations to improve generalization on the target domain. Further, UDA methods work under the assumption that the source data is accessible during the adaptation process. However, in real-world scenarios, the labelled source data is often restricted due to privacy regulations, data transmission constraints, or proprietary data concerns. The Source-Free Domain Adaptation (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data. In this paper, we explore the SFDA setting for the task of adaptive object detection. To this end, we propose a novel training strategy for adapting a source-trained object detector to the target domain without source data. More precisely, we design a novel contrastive loss to enhance the target representations by exploiting the objects relations for a given target domain input. These object instance relations are modelled using an Instance Relation Graph (IRG) network, which are then used to guide the contrastive representation learning. In addition, we utilize a student-teacher to effectively distill knowledge from source-trained model to target domain. Extensive …

Poster
You-Wei Luo · Chuan-Xian Ren

[ West Building Exhibit Halls ABC ]

As an important methodology to measure distribution discrepancy, optimal transport (OT) has been successfully applied to learn generalizable visual models under changing environments. However, there are still limitations, including strict prior assumption and implicit alignment, for current OT modeling in challenging real-world scenarios like partial domain adaptation, where the learned transport plan may be biased and negative transfer is inevitable. Thus, it is necessary to explore a more feasible OT methodology for real-world applications. In this work, we focus on the rigorous OT modeling for conditional distribution matching and label shift correction. A novel masked OT (MOT) methodology on conditional distributions is proposed by defining a mask operation with label information. Further, a relaxed and reweighting formulation is proposed to improve the robustness of OT in extreme scenarios. We prove the theoretical equivalence between conditional OT and MOT, which implies the well-defined MOT serves as a computation-friendly proxy. Extensive experiments validate the effectiveness of theoretical results and proposed model.

Poster
Hao Yu · Xu Cheng · Wei Peng

[ West Building Exhibit Halls ABC ]

Visible-infrared recognition (VI recognition) is a challenging task due to the enormous visual difference across heterogeneous images. Most existing works achieve promising results by transfer learning, such as pretraining on the ImageNet, based on advanced neural architectures like ResNet and ViT. However, such methods ignore the negative influence of the pretrained colour prior knowledge, as well as their heavy computational burden makes them hard to deploy in actual scenarios with limited resources. In this paper, we propose a novel task-oriented pretrained lightweight neural network (TOPLight) for VI recognition. Specifically, the TOPLight method simulates the domain conflict and sample variations with the proposed fake domain loss in the pretraining stage, which guides the network to learn how to handle those difficulties, such that a more general modality-shared feature representation is learned for the heterogeneous images. Moreover, an effective fine-grained dependency reconstruction module (FDR) is developed to discover substantial pattern dependencies shared in two modalities. Extensive experiments on VI person re-identification and VI face recognition datasets demonstrate the superiority of the proposed TOPLight, which significantly outperforms the current state of the arts while demanding fewer computational resources.

Poster
Ye Liu · Lingfeng Qiao · Changchong Lu · Di Yin · Chen Lin · Haoyuan Peng · Bo Ren

[ West Building Exhibit Halls ABC ]

Extending from unimodal to multimodal is a critical challenge for unsupervised domain adaptation (UDA). Two major problems emerge in unsupervised multimodal domain adaptation: domain adaptation and modality alignment. An intuitive way to handle these two problems is to fulfill these tasks in two separate stages: aligning modalities followed by domain adaptation, or vice versa. However, domains and modalities are not associated in most existing two-stage studies, and the relationship between them is not leveraged which can provide complementary information to each other. In this paper, we unify these two stages into one to align domains and modalities simultaneously. In our model, a tensor-based alignment module (TAL) is presented to explore the relationship between domains and modalities. By this means, domains and modalities can interact sufficiently and guide them to utilize complementary information for better results. Furthermore, to establish a bridge between domains, a dynamic domain generator (DDG) module is proposed to build transitional samples by mixing the shared information of two domains in a self-supervised manner, which helps our model learn a domain-invariant common representation space. Extensive experiments prove that our method can achieve superior performance in two real-world applications. The code will be publicly available.

Poster
Jinjing Zhu · Haotian Bai · Lin Wang

[ West Building Exhibit Halls ABC ]

Endeavors have been recently made to leverage the vision transformer (ViT) for the challenging unsupervised domain adaptation (UDA) task. They typically adopt the cross-attention in ViT for direct domain alignment. However, as the performance of cross-attention highly relies on the quality of pseudo labels for targeted samples, it becomes less effective when the domain gap becomes large. We solve this problem from a game theory’s perspective with the proposed model dubbed as PMTrans, which bridges source and target domains with an intermediate domain. Specifically, we propose a novel ViT-based module called PatchMix that effectively builds up the intermediate domain, i.e., probability distribution, by learning to sample patches from both domains based on the game-theoretical models. This way, it learns to mix the patches from the source and target domains to maximize the cross entropy (CE), while exploiting two semi-supervised mixup losses in the feature and label spaces to minimize it. As such, we interpret the process of UDA as a min-max CE game with three players, including the feature extractor, classifier, and PatchMix, to find the Nash Equilibria. Moreover, we leverage attention maps from ViT to re-weight the label of each patch by its importance, making it possible to obtain …

Poster
Yizhi Wang · Zeyu Huang · Ariel Shamir · Hui Huang · Hao Zhang · Ruizhen Hu

[ West Building Exhibit Halls ABC ]

We introduce anchored radial observations (ARO), a novel shape encoding for learning implicit field representation of 3D shapes that is category-agnostic and generalizable amid significant shape variations. The main idea behind our work is to reason about shapes through partial observations from a set of viewpoints, called anchors. We develop a general and unified shape representation by employing a fixed set of anchors, via Fibonacci sampling, and designing a coordinate-based deep neural network to predict the occupancy value of a query point in space. Differently from prior neural implicit models that use global shape feature, our shape encoder operates on contextual, query-specific features. To predict point occupancy, locally observed shape information from the perspective of the anchors surrounding the input query point are encoded and aggregated through an attention module, before implicit decoding is performed. We demonstrate the quality and generality of our network, coined ARO-Net, on surface reconstruction from sparse point clouds, with tests on novel and unseen object categories, “one-shape” training, and comparisons to state-of-the-art neural and classical methods for reconstruction and tessellation.

Poster
Dhanajit Brahma · Piyush Rai

[ West Building Exhibit Halls ABC ]

Test-time adaptation (TTA) is the problem of updating a pre-trained source model at inference time given test input(s) from a different target domain. Most existing TTA approaches assume the setting in which the target domain is stationary, i.e., all the test inputs come from a single target domain. However, in many practical settings, the test input distribution might exhibit a lifelong/continual shift over time. Moreover, existing TTA approaches also lack the ability to provide reliable uncertainty estimates, which is crucial when distribution shifts occur between the source and target domain. To address these issues, we present PETAL (Probabilistic lifElong Test-time Adaptation with seLf-training prior), which solves lifelong TTA using a probabilistic approach, and naturally results in (1) a student-teacher framework, where the teacher model is an exponential moving average of the student model, and (2) regularizing the model updates at inference time using the source model as a regularizer. To prevent model drift in the lifelong/continual TTA setting, we also propose a data-driven parameter restoration technique which contributes to reducing the error accumulation and maintaining the knowledge of recent domains by restoring only the irrelevant parameters. In terms of predictive error rate as well as uncertainty based metrics such as …

Poster
Runpeng Yu · Songhua Liu · Xingyi Yang · Xinchao Wang

[ West Building Exhibit Halls ABC ]

Machine learning society has witnessed the emergence of a myriad of Out-of-Distribution (OoD) algorithms, which address the distribution shift between the training and the testing distribution by searching for a unified predictor or invariant feature representation. However, the task of directly mitigating the distribution shift in the unseen testing set is rarely investigated, due to the unavailability of the testing distribution during the training phase and thus the impossibility of training a distribution translator mapping between the training and testing distribution. In this paper, we explore how to bypass the requirement of testing distribution for distribution translator training and make the distribution translation useful for OoD prediction. We propose a portable Distribution Shift Inversion (DSI) algorithm, in which, before being fed into the prediction model, the OoD testing samples are first linearly combined with additional Gaussian noise and then transferred back towards the training distribution using a diffusion model trained only on the source distribution. Theoretical analysis reveals the feasibility of our method. Experimental results, on both multiple-domain generalization datasets and single-domain generalization datasets, show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms. Our code is available at https://github.com/yu-rp/Distribution-Shift-Iverson}{https://github.com/yu-rp/Distribution-Shift-Iverson.

Poster
Jiali Cui · Ying Nian Wu · Tian Han

[ West Building Exhibit Halls ABC ]

This paper studies the fundamental problem of learning multi-layer generator models. The multi-layer generator model builds multiple layers of latent variables as a prior model on top of the generator, which benefits learning complex data distribution and hierarchical representations. However, such a prior model usually focuses on modeling inter-layer relations between latent variables by assuming non-informative (conditional) Gaussian distributions, which can be limited in model expressivity. To tackle this issue and learn more expressive prior models, we propose an energy-based model (EBM) on the joint latent space over all layers of latent variables with the multi-layer generator as its backbone. Such joint latent space EBM prior model captures the intra-layer contextual relations at each layer through layer-wise energy terms, and latent variables across different layers are jointly corrected. We develop a joint training scheme via maximum likelihood estimation (MLE), which involves Markov Chain Monte Carlo (MCMC) sampling for both prior and posterior distributions of the latent variables from different layers. To ensure efficient inference and learning, we further propose a variational training scheme where an inference model is used to amortize the costly posterior MCMC sampling. Our experiments demonstrate that the learned model can be expressive in generating high-quality images …

Poster
Saachi Jain · Hadi Salman · Alaa Khaddaj · Eric Wong · Sung Min Park · Aleksander Mądry

[ West Building Exhibit Halls ABC ]

It is commonly believed that more pre-training data leads to better transfer learning performance. However, recent evidence suggests that removing data from the source dataset can actually help too. In this work, we present a framework for probing the impact of the source dataset’s composition on transfer learning performance. Our framework facilitates new capabilities such as identifying transfer learning brittleness and detecting pathologies such as data-leakage and the presence of misleading examples in the source dataset. In particular, we demonstrate that removing detrimental datapoints identified by our framework improves transfer performance from ImageNet on a variety of transfer tasks.

Poster
Achin Jain · Gurumurthy Swaminathan · Paolo Favaro · Hao Yang · Avinash Ravichandran · Hrayr Harutyunyan · Alessandro Achille · Onkar Dabeer · Bernt Schiele · Ashwin Swaminathan · Stefano Soatto

[ West Building Exhibit Halls ABC ]

We propose an approach to estimate the number of samples required for a model to reach a target performance. We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset (e.g., 5 samples per class) for extrapolation. This is because the log-performance error against the log-dataset size follows a nonlinear progression in the few-shot regime followed by a linear progression in the high-shot regime. We introduce a novel piecewise power law (PPL) that handles the two data regimes differently. To estimate the parameters of the PPL, we introduce a random forest regressor trained via meta learning that generalizes across classification/detection tasks, ResNet/ViT based architectures, and random/pre-trained initializations. The PPL improves the performance estimation on average by 37% across 16 classification datasets and 33% across 10 detection datasets, compared to the power law. We further extend the PPL to provide a confidence bound and use it to limit the prediction horizon that reduces over-estimation of data by 76% on classification and 91% on detection datasets.

Poster
Hao Li · Charless Fowlkes · Hao Yang · Onkar Dabeer · Zhuowen Tu · Stefano Soatto

[ West Building Exhibit Halls ABC ]

Model selection is essential for reducing the search cost of the best pre-trained model over a large-scale model zoo for a downstream task. After analyzing recent hand-designed model selection criteria with 400+ ImageNet pre-trained models and 40 downstream tasks, we find that they can fail due to invalid assumptions and intrinsic limitations. The prior knowledge on model capacity and dataset also can not be easily integrated into the existing criteria. To address these issues, we propose to convert model selection as a recommendation problem and to learn from the past training history. Specifically, we characterize the meta information of datasets and models as features, and use their transfer learning performance as the guided score. With thousands of historical training jobs, a recommendation system can be learned to predict the model selection score given the features of the dataset and the model as input. Our approach enables integrating existing model selection scores as additional features and scales with more historical data. We evaluate the prediction accuracy with 22 pre-trained models over 40 downstream tasks. With extensive evaluations, we show that the learned approach can outperform prior hand-designed model selection methods significantly when relevant training history is available.

Poster
Peng Liao · Yaochu Jin · Wenli Du

[ West Building Exhibit Halls ABC ]

The success of multi-task learning (MTL) can largely be attributed to the shared representation of related tasks, allowing the models to better generalise. In deep learning, this is usually achieved by sharing a common neural network architecture and jointly training the weights. However, the joint training of weighting parameters on multiple related tasks may lead to performance degradation, known as negative transfer. To address this issue, this work proposes an evolutionary multi-tasking neural architecture search (EMT-NAS) algorithm to accelerate the search process by transferring architectural knowledge across multiple related tasks. In EMT-NAS, unlike the traditional MTL, the model for each task has a personalised network architecture and its own weights, thus offering the capability of effectively alleviating negative transfer. A fitness re-evaluation method is suggested to alleviate fluctuations in performance evaluations resulting from parameter sharing and the mini-batch gradient descent training method, thereby avoiding losing promising solutions during the search process. To rigorously verify the performance of EMT-NAS, the classification tasks used in the empirical assessments are derived from different datasets, including the CIFAR-10 and CIFAR-100, and four MedMNIST datasets. Extensive comparative experiments on different numbers of tasks demonstrate that EMT-NAS takes 8% and up to 40% on CIFAR and …

Poster
Runqi Wang · Xiaoyue Duan · Guoliang Kang · Jianzhuang Liu · Shaohui Lin · Songcen Xu · Jinhu Lü · Baochang Zhang

[ West Building Exhibit Halls ABC ]

Continual learning aims to enable a model to incrementally learn knowledge from sequentially arrived data. Previous works adopt the conventional classification architecture, which consists of a feature extractor and a classifier. The feature extractor is shared across sequentially arrived tasks or classes, but one specific group of weights of the classifier corresponding to one new class should be incrementally expanded. Consequently, the parameters of a continual learner gradually increase. Moreover, as the classifier contains all historical arrived classes, a certain size of the memory is usually required to store rehearsal data to mitigate classifier bias and catastrophic forgetting. In this paper, we propose a non-incremental learner, named AttriCLIP, to incrementally extract knowledge of new classes or tasks. Specifically, AttriCLIP is built upon the pre-trained visual-language model CLIP. Its image encoder and text encoder are fixed to extract features from both images and text prompts. Each text prompt consists of a category name and a fixed number of learnable parameters which are selected from our designed attribute bank and serve as attributes. As we compute the visual and textual similarity for classification, AttriCLIP is a non-incremental learner. The attribute prompts, which encode the common knowledge useful for classification, can effectively mitigate …

Poster
Iordanis Fostiropoulos · Jiaye Zhu · Laurent Itti

[ West Building Exhibit Halls ABC ]

In Continual Learning (CL), a model is required to learn a stream of tasks sequentially without significant performance degradation on previously learned tasks. Current approaches fail for a long sequence of tasks from diverse domains and difficulties. Many of the existing CL approaches are difficult to apply in practice due to excessive memory cost or training time, or are tightly coupled to a single device. With the intuition derived from the widely applied mini-batch training, we propose Batch Model Consolidation (BMC) to support more realistic CL under conditions where multiple agents are exposed to a range of tasks. During a regularization phase, BMC trains multiple expert models in parallel on a set of disjoint tasks. Each expert maintains weight similarity to a base model through a stability loss, and constructs a buffer from a fraction of the task’s data. During the consolidation phase, we combine the learned knowledge on ‘batches’ of expert models using a batched consolidation loss in memory data that aggregates all buffers. We thoroughly evaluate each component of our method in an ablation study and demonstrate the effectiveness on standardized benchmark datasets Split-CIFAR-100, Tiny-ImageNet, and the Stream dataset composed of 71 image classification tasks from diverse domains …

Poster
Yinglong Wang · Chao Ma · Jianzhuang Liu

[ West Building Exhibit Halls ABC ]

Existing methods mainly handle single weather types. However, the connections of different weather conditions at deep representation level are usually ignored. These connections, if used properly, can generate complementary representations for each other to make up insufficient training data, obtaining positive performance gains and better generalization. In this paper, we focus on the very correlated rain and snow to explore their connections at deep representation level. Because sub-optimal connections may cause negative effect, another issue is that if rain and snow are handled in a multi-task learning way, how to find an optimal connection strategy to simultaneously improve deraining and desnowing performance. To build desired connection, we propose a smart knowledge assignment strategy, called SmartAssign, to optimally assign the knowledge learned from both tasks to a specific one. In order to further enhance the accuracy of knowledge assignment, we propose a novel knowledge contrast mechanism, so that the knowledge assigned to different tasks preserves better uniqueness. The inherited inductive biases usually limit the modelling ability of CNNs, we introduce a novel transformer block to constitute the backbone of our network to effectively combine long-range context dependency and local image details. Extensive experiments on seven benchmark datasets verify that proposed SmartAssign …

Poster
Sucheng Ren · Fangyun Wei · Zheng Zhang · Han Hu

[ West Building Exhibit Halls ABC ]

Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong …

Poster
Ameya Prabhu · Hasan Abed Al Kader Hammoud · Puneet K. Dokania · Philip H.S. Torr · Ser-Nam Lim · Bernard Ghanem · Adel Bibi

[ West Building Exhibit Halls ABC ]

Continual Learning (CL) aims to sequentially train models on streams of incoming data that vary in distribution by preserving previous knowledge while adapting to new data. Current CL literature focuses on restricted access to previously seen data, while imposing no constraints on the computational budget for training. This is unreasonable for applications in-the-wild, where systems are primarily constrained by computational and time budgets, not storage. We revisit this problem with a large-scale benchmark and analyze the performance of traditional CL approaches in a compute-constrained setting, where effective memory samples used in training can be implicitly restricted as a consequence of limited computation. We conduct experiments evaluating various CL sampling strategies, distillation losses, and partial fine-tuning on two large-scale datasets, namely ImageNet2K and Continual Google Landmarks V2 in data incremental, class incremental, and time incremental settings. Through extensive experiments amounting to a total of over 1500 GPU-hours, we find that, under compute-constrained setting, traditional CL approaches, with no exception, fail to outperform a simple minimal baseline that samples uniformly from memory. Our conclusions are consistent in a different number of stream time steps, e.g., 20 to 200, and under several computational budgets. This suggests that most existing CL methods are particularly …

Poster
Kangyang Luo · Xiang Li · Yunshi Lan · Ming Gao

[ West Building Exhibit Halls ABC ]

Federated Learning (FL) has emerged as a de facto machine learning area and received rapid increasing research interests from the community. However, catastrophic forgetting caused by data heterogeneity and partial participation poses distinctive challenges for FL, which are detrimental to the performance. To tackle the problems, we propose a new FL approach (namely GradMA), which takes inspiration from continual learning to simultaneously correct the server-side and worker-side update directions as well as take full advantage of server’s rich computing and memory resources. Furthermore, we elaborate a memory reduction strategy to enable GradMA to accommodate FL with a large scale of workers. We then analyze convergence of GradMA theoretically under the smooth non-convex setting and show that its convergence rate achieves a linear speed up w.r.t the increasing number of sampled active workers. At last, our extensive experiments on various image classification tasks show that GradMA achieves significant performance gains in accuracy and communication efficiency compared to SOTA baselines. We provide our code here: https://github.com/lkyddd/GradMA.

Poster
Zhen Zhao · Zhizhong Zhang · Xin Tan · Jun Liu · Yanyun Qu · Yuan Xie · Lizhuang Ma

[ West Building Exhibit Halls ABC ]

Continual learning aims to incrementally learn novel classes over time, while not forgetting the learned knowledge. Recent studies have found that learning would not forget if the updated gradient is orthogonal to the feature space. However, previous approaches require the gradient to be fully orthogonal to the whole feature space, leading to poor plasticity, as the feasible gradient direction becomes narrow when the tasks continually come, i.e., feature space is unlimitedly expanded. In this paper, we propose a space decoupling (SD) algorithm to decouple the feature space into a pair of complementary subspaces, i.e., the stability space I, and the plasticity space R. I is established by conducting space intersection between the historic and current feature space, and thus I contains more task-shared bases. R is constructed by seeking the orthogonal complementary subspace of I, and thus R mainly contains more task-specific bases. By putting the distinguishing constraints on R and I, our method achieves a better balance between stability and plasticity. Extensive experiments are conducted by applying SD to gradient projection baselines, and show SD is model-agnostic and achieves SOTA results on publicly available datasets.

Poster
Yushun Tang · Ce Zhang · Heng Xu · Shuoshuo Chen · Jie Cheng · Luziwei Leng · Qinghai Guo · Zhihai He

[ West Building Exhibit Halls ABC ]

Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. We take inspiration from the biological plausibility learning where the neuron responses are tuned based on a local synapse-change procedure and activated by competitive lateral inhibition rules. Based on these feed-forward learning rules, we design a soft Hebbian learning process which provides an unsupervised and effective mechanism for online adaptation. We observe that the performance of this feed-forward Hebbian learning for fully test-time adaptation can be significantly improved by incorporating a feedback neuro-modulation layer. It is able to fine-tune the neuron responses based on the external feedback generated by the error back-propagation from the top inference layers. This leads to our proposed neuro-modulated Hebbian learning (NHL) method for fully test-time adaptation. With the unsupervised feed-forward soft Hebbian learning being combined with a learned neuro-modulator to capture feedback from external responses, the source model can be effectively adapted during the testing process. Experimental results on benchmark datasets demonstrate that our proposed method can significantly improve the adaptation performance of network models and outperforms existing state-of-the-art methods.

Poster
George Cazenavette · Tongzhou Wang · Antonio Torralba · Alexei A. Efros · Jun-Yan Zhu

[ West Building Exhibit Halls ABC ]

Dataset Distillation aims to distill an entire dataset’s knowledge into a few synthetic images. The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data. Despite a recent upsurge of progress in the field, existing dataset distillation methods fail to generalize to new architectures and scale to high-resolution datasets. To overcome the above issues, we propose to use the learned prior from pre-trained deep generative models to synthesize the distilled data. To achieve this, we present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model’s latent space. Our method augments existing techniques, significantly improving cross-architecture generalization in all settings.

Poster
Jiawei Du · Yidi Jiang · Vincent Y. F. Tan · Joey Tianyi Zhou · Haizhou Li

[ West Building Exhibit Halls ABC ]

Model-based deep learning has achieved astounding successes due in part to the availability of large-scale real-world data. However, processing such massive amounts of data comes at a considerable cost in terms of computations, storage, training and the search for good neural architectures. Dataset distillation has thus recently come to the fore. This paradigm involves distilling information from large real-world datasets into tiny and compact synthetic datasets such that processing the latter yields similar performances as the former. State-of-the-art methods primarily rely on learning the synthetic dataset by matching the gradients obtained during training between the real and synthetic data. However, these gradient-matching methods suffer from the accumulated trajectory error caused by the discrepancy between the distillation and subsequent evaluation. To alleviate the adverse impact of this accumulated trajectory error, we propose a novel approach that encourages the optimization algorithm to seek a flat trajectory. We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory. Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7% on a subset of images of the ImageNet dataset with higher resolution images. …

Poster
Songhua Liu · Jingwen Ye · Runpeng Yu · Xinchao Wang

[ West Building Exhibit Halls ABC ]

Dataset distillation, also known as dataset condensation, aims to compress a large dataset into a compact synthetic one. Existing methods perform dataset condensation by assuming a fixed storage or transmission budget. When the budget changes, however, they have to repeat the synthesizing process with access to original datasets, which is highly cumbersome if not infeasible at all. In this paper, we explore the problem of slimmable dataset condensation, to extract a smaller synthetic dataset given only previous condensation results. We first study the limitations of existing dataset condensation algorithms on such a successive compression setting and identify two key factors: (1) the inconsistency of neural networks over different compression times and (2) the underdetermined solution space for synthetic data. Accordingly, we propose a novel training objective for slimmable dataset condensation to explicitly account for both factors. Moreover, synthetic datasets in our method adopt an significance-aware parameterization. Theoretical derivation indicates that an upper-bounded error can be achieved by discarding the minor components without training. Alternatively, if training is allowed, this strategy can serve as a strong initialization that enables a fast convergence. Extensive comparisons and ablations demonstrate the superiority of the proposed solution over existing methods on multiple benchmarks.

Poster
Pengfei Wang · Zhaoxiang Zhang · Zhen Lei · Lei Zhang

[ West Building Exhibit Halls ABC ]

The goal of domain generalization (DG) is to enhance the generalization capability of the model learned from a source domain to other unseen domains. The recently developed Sharpness-Aware Minimization (SAM) method aims to achieve this goal by minimizing the sharpness measure of the loss landscape. Though SAM and its variants have demonstrated impressive DG performance, they may not always converge to the desired flat region with a small loss value. In this paper, we present two conditions to ensure that the model could converge to a flat minimum with a small loss, and present an algorithm, named Sharpness-Aware Gradient Matching (SAGM), to meet the two conditions for improving model generalization capability. Specifically, the optimization objective of SAGM will simultaneously minimize the empirical risk, the perturbed loss (i.e., the maximum loss within a neighborhood in the parameter space), and the gap between them. By implicitly aligning the gradient directions between the empirical risk and the perturbed loss, SAGM improves the generalization capability over SAM and its variants without increasing the computational cost. Extensive experimental results show that our proposed SAGM method consistently outperforms the state-of-the-art methods on five DG benchmarks, including PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. Codes are available at …

Poster
Wonhyeok Choi · Sunghoon Im

[ West Building Exhibit Halls ABC ]

In this paper, we present a new MTL framework that searches for structures optimized for multiple tasks with diverse graph topologies and shares features among tasks. We design a restricted DAG-based central network with read-in/read-out layers to build topologically diverse task-adaptive structures while limiting search space and time. We search for a single optimized network that serves as multiple task adaptive sub-networks using our three-stage training process. To make the network compact and discretized, we propose a flow-based reduction algorithm and a squeeze loss used in the training process. We evaluate our optimized network on various public MTL datasets and show ours achieves state-of-the-art performance. An extensive ablation study experimentally validates the effectiveness of the sub-module and schemes in our framework.

Poster
Ahmed Imtiaz Humayun · Randall Balestriero · Guha Balakrishnan · Richard G. Baraniuk

[ West Building Exhibit Halls ABC ]

Current Deep Network (DN) visualization and interpretability methods rely heavily on data space visualizations such as scoring which dimensions of the data are responsible for their associated prediction or generating new data features or samples that best match a given DN unit or representation. In this paper, we go one step further by developing the first provably exact method for computing the geometry of a DN’s mapping -- including its decision boundary -- over a specified region of the data space. By leveraging the theory of Continuous Piecewise Linear (CPWL) spline DNs, SplineCam exactly computes a DN’s geometry without resorting to approximations such as sampling or architecture simplification. SplineCam applies to any DN architecture based on CPWL activation nonlinearities, including (leaky) ReLU, absolute value, maxout, and max-pooling and can also be applied to regression DNs such as implicit neural representations. Beyond decision boundary visualization and characterization, SplineCam enables one to compare architectures, measure generalizability, and sample from the decision boundary on or off the data manifold. Project website: https://bit.ly/splinecam

Poster
Jaeill Kim · Suhyun Kang · Duhun Hwang · Jungwook Shin · Wonjong Rhee

[ West Building Exhibit Halls ABC ]

Since the introduction of deep learning, a wide scope of representation properties, such as decorrelation, whitening, disentanglement, rank, isotropy, and mutual information, have been studied to improve the quality of representation. However, manipulating such properties can be challenging in terms of implementational effectiveness and general applicability. To address these limitations, we propose to regularize von Neumann entropy (VNE) of representation. First, we demonstrate that the mathematical formulation of VNE is superior in effectively manipulating the eigenvalues of the representation autocorrelation matrix. Then, we demonstrate that it is widely applicable in improving state-of-the-art algorithms or popular benchmark algorithms by investigating domain-generalization, meta-learning, self-supervised learning, and generative models. In addition, we formally establish theoretical connections with rank, disentanglement, and isotropy of representation. Finally, we provide discussions on the dimension control of VNE and the relationship with Shannon entropy. Code is available at: https://github.com/jaeill/CVPR23-VNE.

Poster
Yuedong Yang · Guihong Li · Radu Marculescu

[ West Building Exhibit Halls ABC ]

Despite its importance for federated learning, continuous learning and many other applications, on-device training remains an open problem for EdgeAI. The problem stems from the large number of operations (e.g., floating point multiplications and additions) and memory consumption required during training by the back-propagation algorithm. Consequently, in this paper, we propose a new gradient filtering approach which enables on-device CNN model training. More precisely, our approach creates a special structure with fewer unique elements in the gradient map, thus significantly reducing the computational complexity and memory consumption of back propagation during training. Extensive experiments on image classification and semantic segmentation with multiple CNN models (e.g., MobileNet, DeepLabV3, UPerNet) and devices (e.g., Raspberry Pi and Jetson Nano) demonstrate the effectiveness and wide applicability of our approach. For example, compared to SOTA, we achieve up to 19× speedup and 77.1% memory savings on ImageNet classification with only 0.1% accuracy loss. Finally, our method is easy to implement and deploy; over 20× speedup and 90% energy savings have been observed compared to highly optimized baselines in MKLDNN and CUDNN on NVIDIA Jetson Nano. Consequently, our approach opens up a new direction of research with a huge potential for on-device training.

Poster
Tang Li · Fengchun Qiao · Mengmeng Ma · Xi Peng

[ West Building Exhibit Halls ABC ]

As black-box models increasingly power high-stakes applications, a variety of data-driven explanation methods have been introduced. Meanwhile, machine learning models are constantly challenged by distributional shifts. A question naturally arises: Are data-driven explanations robust against out-of-distribution data? Our empirical results show that even though predict correctly, the model might still yield unreliable explanations under distributional shifts. How to develop robust explanations against out-of-distribution data? To address this problem, we propose an end-to-end model-agnostic learning framework Distributionally Robust Explanations (DRE). The key idea is, inspired by self-supervised learning, to fully utilizes the inter-distribution information to provide supervisory signals for the learning of explanations without human annotation. Can robust explanations benefit the model’s generalization capability? We conduct extensive experiments on a wide range of tasks and data types, including classification and regression on image and scientific tabular data. Our results demonstrate that the proposed method significantly improves the model’s performance in terms of explanation and prediction robustness against distributional shifts.

Poster
Jongin Lim · Youngdong Kim · Byungjai Kim · Chanho Ahn · Jinwoo Shin · Eunho Yang · Seungju Han

[ West Building Exhibit Halls ABC ]

Neural networks are often prone to bias toward spurious correlations inherent in a dataset, thus failing to generalize unbiased test criteria. A key challenge to resolving the issue is the significant lack of bias-conflicting training data (i.e., samples without spurious correlations). In this paper, we propose a novel data augmentation approach termed Bias-Adversarial augmentation (BiasAdv) that supplements bias-conflicting samples with adversarial images. Our key idea is that an adversarial attack on a biased model that makes decisions based on spurious correlations may generate synthetic bias-conflicting samples, which can then be used as augmented training data for learning a debiased model. Specifically, we formulate an optimization problem for generating adversarial images that attack the predictions of an auxiliary biased model without ruining the predictions of the desired debiased model. Despite its simplicity, we find that BiasAdv can generate surprisingly useful synthetic bias-conflicting samples, allowing the debiased model to learn generalizable representations. Furthermore, BiasAdv does not require any bias annotations or prior knowledge of the bias type, which enables its broad applicability to existing debiasing methods to improve their performances. Our extensive experimental results demonstrate the superiority of BiasAdv, achieving state-of-the-art performance on four popular benchmark datasets across various bias domains.

Poster
Sheng Xu · Yanjing Li · Mingbao Lin · Peng Gao · Guodong Guo · Jinhu Lü · Baochang Zhang

[ West Building Exhibit Halls ABC ]

The recent detection transformer (DETR) has advanced object detection, but its application on resource-constrained devices requires massive computation and memory resources. Quantization stands out as a solution by representing the network in low-bit parameters and operations. However, there is a significant performance drop when performing low-bit quantized DETR (Q-DETR) with existing quantization methods. We find that the bottlenecks of Q-DETR come from the query information distortion through our empirical analyses. This paper addresses this problem based on a distribution rectification distillation (DRD). We formulate our DRD as a bi-level optimization problem, which can be derived by generalizing the information bottleneck (IB) principle to the learning of Q-DETR. At the inner level, we conduct a distribution alignment for the queries to maximize the self-information entropy. At the upper level, we introduce a new foreground-aware query matching scheme to effectively transfer the teacher information to distillation-desired features to minimize the conditional information entropy. Extensive experimental results show that our method performs much better than prior arts. For example, the 4-bit Q-DETR can theoretically accelerate DETR with ResNet-50 backbone by 6.6x and achieve 39.4% AP, with only 2.6% performance gaps than its real-valued counterpart on the COCO dataset.

Poster
Juncheol Shin · Junhyuk So · Sein Park · Seungyeop Kang · Sungjoo Yoo · Eunhyeok Park

[ West Building Exhibit Halls ABC ]

Straight-through estimator (STE), which enables the gradient flow over the non-differentiable function via approximation, has been favored in studies related to quantization-aware training (QAT). However, STE incurs unstable convergence during QAT, resulting in notable quality degradation in low-precision representation. Recently, pseudo-quantization training has been proposed as an alternative approach to updating the learnable parameters using the pseudo-quantization noise instead of STE. In this study, we propose a novel noise proxy-based integrated pseudo-quantization (NIPQ) that enables unified support of pseudo-quantization for both activation and weight with minimal error by integrating the idea of truncation on the pseudo-quantization framework. NIPQ updates all of the quantization parameters (e.g., bit-width and truncation boundary) as well as the network parameters via gradient descent without STE instability, resulting in greatly-simplified but reliable precision allocation without human intervention. Our extensive experiments show that NIPQ outperforms existing quantization algorithms in various vision and language applications by a large margin.

Poster
Vinu Sankar Sadasivan · Soltanolkotabi · Soheil Feizi

[ West Building Exhibit Halls ABC ]

Large-scale training of modern deep learning models heavily relies on publicly available data on the web. This potentially unauthorized usage of online data leads to concerns regarding data privacy. Recent works aim to make unlearnable data for deep learning models by adding small, specially designed noises to tackle this issue. However, these methods are vulnerable to adversarial training (AT) and/or are computationally heavy. In this work, we propose a novel, model-free, Convolution-based Unlearnable DAtaset (CUDA) generation technique. CUDA is generated using controlled class-wise convolutions with filters that are randomly generated via a private key. CUDA encourages the network to learn the relation between filters and labels rather than informative features for classifying the clean data. We develop some theoretical analysis demonstrating that CUDA can successfully poison Gaussian mixture data by reducing the clean data performance of the optimal Bayes classifier. We also empirically demonstrate the effectiveness of CUDA with various datasets (CIFAR-10, CIFAR-100, ImageNet-100, and Tiny-ImageNet), and architectures (ResNet-18, VGG-16, Wide ResNet-34-10, DenseNet-121, DeIT, EfficientNetV2-S, and MobileNetV2). Our experiments show that CUDA is robust to various data augmentations and training approaches such as smoothing, AT with different budgets, transfer learning, and fine-tuning. For instance, training a ResNet-18 on ImageNet-100 CUDA …

Poster
Kaiwen Cui · Yingchen Yu · Fangneng Zhan · Shengcai Liao · Shijian Lu · Eric P. Xing

[ West Building Exhibit Halls ABC ]

Generative Adversarial Networks (GANs) rely heavily on large-scale training data for training high-quality image generation models. With limited training data, the GAN discriminator often suffers from severe overfitting which directly leads to degraded generation especially in generation diversity. Inspired by the recent advances in knowledge distillation (KD), we propose KD-GAN, a knowledge-distillation based generation framework that introduces pre-trained vision-language models for training effective data-limited image generation models. KD-GAN consists of two innovative designs. The first is aggregated generative KD that mitigates the discriminator overfitting by challenging the discriminator with harder learning tasks and distilling more generalizable knowledge from the pre-trained models. The second is correlated generative KD that improves the generation diversity by distilling and preserving the diverse image-text correlation within the pre-trained models. Extensive experiments over multiple benchmarks show that KD-GAN achieves superior image generation with limited training data. In addition, KD-GAN complements the state-of-the-art with consistent and substantial performance gains. Note that codes will be released.

Poster
Siddarth Asokan · Chandra Sekhar Seelamantula

[ West Building Exhibit Halls ABC ]

Training Generative adversarial networks (GANs) stably is a challenging task. The generator in GANs transform noise vectors, typically Gaussian distributed, into realistic data such as images. In this paper, we propose a novel approach for training GANs with images as inputs, but without enforcing any pairwise constraints. The intuition is that images are more structured than noise, which the generator can leverage to learn a more robust transformation. The process can be made efficient by identifying closely related datasets, or a “friendly neighborhood” of the target distribution, inspiring the moniker, Spider GAN. To define friendly neighborhoods leveraging proximity between datasets, we propose a new measure called the signed inception distance (SID), inspired by the polyharmonic kernel. We show that the Spider GAN formulation results in faster convergence, as the generator can discover correspondence even between seemingly unrelated datasets, for instance, between Tiny-ImageNet and CelebA faces. Further, we demonstrate cascading Spider GAN, where the output distribution from a pre-trained GAN generator is used as the input to the subsequent network. Effectively, transporting one distribution to another in a cascaded fashion until the target is learnt -- a new flavor of transfer learning. We demonstrate the efficacy of the Spider approach on …

Poster
Harleen Hanspal · Alessio Lomuscio

[ West Building Exhibit Halls ABC ]

The deployment of perception systems based on neural networks in safety critical applications requires assurance on their robustness. Deterministic guarantees on network robustness require formal verification. Standard approaches for verifying robustness analyse invariance to analytically defined transformations, but not the diverse and ubiquitous changes involving object pose, scene viewpoint, occlusions, etc. To this end, we present an efficient approach for verifying specifications definable using Latent Variable Models that capture such diverse changes. The approach involves adding an invertible encoding head to the network to be verified, enabling the verification of latent space sets with minimal reconstruction overhead. We report verification experiments for three classes of proposed latent space specifications, each capturing different types of realistic input variations. Differently from previous work in this area, the proposed approach is relatively independent of input dimensionality and scales to a broad class of deep networks and real-world datasets by mitigating the inefficiency and decoder expressivity dependence in the present state-of-the-art.

Poster
Kexin Sun · Zhineng Chen · Gongwei Wang · Jun Liu · Xiongjun Ye · Yu-Gang Jiang

[ West Building Exhibit Halls ABC ]

The cost of pathological examination makes virtual re-staining of pathological images meaningful. However, due to the ultra-high resolution of pathological images, traditional virtual re-staining methods have to divide a WSI image into patches for model training and inference. Such a limitation leads to the lack of global information, resulting in observable differences in color, brightness and contrast when the re-stained patches are merged to generate an image of larger size. We summarize this issue as the square effect. Some existing methods try to solve this issue through overlapping between patches or simple post-processing. But the former one is not that effective, while the latter one requires carefully tuning. In order to eliminate the square effect, we design a bi-directional feature fusion generative adversarial network (BFF-GAN) with a global branch and a local branch. It learns the inter-patch connections through the fusion of global and local features plus patch-wise attention. We perform experiments on both the private dataset RCC and the public dataset ANHIR. The results show that our model achieves competitive performance and is able to generate extremely real images that are deceptive even for experienced pathologists, which means it is of great clinical significance.

Poster
Xuan Zhang · Shiyu Li · Xi Li · Ping Huang · Jiulong Shan · Ting Chen

[ West Building Exhibit Halls ABC ]

Visual anomaly detection, an important problem in computer vision, is usually formulated as a one-class classification and segmentation task. The student-teacher (S-T) framework has proved to be effective in solving this challenge. However, previous works based on S-T only empirically applied constraints on normal data and fused multi-level information. In this study, we propose an improved model called DeSTSeg, which integrates a pre-trained teacher network, a denoising student encoder-decoder, and a segmentation network into one framework. First, to strengthen the constraints on anomalous data, we introduce a denoising procedure that allows the student network to learn more robust representations. From synthetically corrupted normal images, we train the student network to match the teacher network feature of the same images without corruption. Second, to fuse the multi-level S-T features adaptively, we train a segmentation network with rich supervision from synthetic anomaly masks, achieving a substantial performance improvement. Experiments on the industrial inspection benchmark dataset demonstrate that our method achieves state-of-the-art performance, 98.6% on image-level AUC, 75.8% on pixel-level average precision, and 76.4% on instance-level average precision.

Poster
Ying Zhao

[ West Building Exhibit Halls ABC ]

Unsupervised anomaly localization and detection is crucial for industrial manufacturing processes due to the lack of anomalous samples. Recent unsupervised advances on industrial anomaly detection achieve high performance by training separate models for many different categories. The model storage and training time cost of this paradigm is high. Moreover, the setting of one-model-N-classes leads to fearful degradation of existing methods. In this paper, we propose a unified CNN framework for unsupervised anomaly localization, named OmniAL. This method conquers aforementioned problems by improving anomaly synthesis, reconstruction and localization. To prevent the model learning identical reconstruction, it trains the model with proposed panel-guided synthetic anomaly data rather than directly using normal data. It increases anomaly reconstruction error for multi-class distribution by using a network that is equipped with proposed Dilated Channel and Spatial Attention (DCSA) blocks. To better localize the anomaly regions, it employs proposed DiffNeck between reconstruction and localization sub-networks to explore multi-level differences. Experiments on 15-class MVTecAD and 12-class VisA datasets verify the advantage of proposed OmniAL that surpasses the state-of-the-art of unified models. On 15-class-MVTecAD/12-class-VisA, its single unified model achieves 97.2/87.8 image-AUROC, 98.3/96.6 pixel-AUROC and 73.4/41.7 pixel-AP for anomaly detection and localization respectively. Besides that, we make the first …

Poster
Jiahua Dong · Duzhen Zhang · Yang Cong · Wei Cong · Henghui Ding · Dengxin Dai

[ West Building Exhibit Halls ABC ]

Federated learning-based semantic segmentation (FSS) has drawn widespread attention via decentralized training on local clients. However, most FSS models assume categories are fxed in advance, thus heavily undergoing forgetting on old categories in practical applications where local clients receive new categories incrementally while have no memory storage to access old classes. Moreover, new clients collecting novel classes may join in the global training of FSS, which further exacerbates catastrophic forgetting. To surmount the above challenges, we propose a Forgetting-Balanced Learning (FBL) model to address heterogeneous forgetting on old classes from both intra-client and inter-client aspects. Specifically, under the guidance of pseudo labels generated via adaptive class-balanced pseudo labeling, we develop a forgetting-balanced semantic compensation loss and a forgetting-balanced relation consistency loss to rectify intra-client heterogeneous forgetting of old categories with background shift. It performs balanced gradient propagation and relation consistency distillation within local clients. Moreover, to tackle heterogeneous forgetting from inter-client aspect, we propose a task transition monitor. It can identify new classes under privacy protection and store the latest old global model for relation distillation. Qualitative experiments reveal large improvement of our model against comparison methods. The code is available at https://github.com/JiahuaDong/FISS.

Poster
SangMook Kim · Sangmin Bae · Hwanjun Song · Se-Young Yun

[ West Building Exhibit Halls ABC ]

Although federated learning has made awe-inspiring advances, most studies have assumed that the client’s data are fully labeled. However, in a real-world scenario, every client may have a significant amount of unlabeled instances. Among the various approaches to utilizing unlabeled data, a federated active learning framework has emerged as a promising solution. In the decentralized setting, there are two types of available query selector models, namely ‘global’ and ‘local-only’ models, but little literature discusses their performance dominance and its causes. In this work, we first demonstrate that the superiority of two selector models depends on the global and local inter-class diversity. Furthermore, we observe that the global and local-only models are the keys to resolving the imbalance of each side. Based on our findings, we propose LoGo, a FAL sampling strategy robust to varying local heterogeneity levels and global imbalance ratio, that integrates both models by two steps of active selection scheme. LoGo consistently outperforms six active learning strategies in the total number of 38 experimental settings.

Poster
Ruipeng Zhang · Qinwei Xu · Jiangchao Yao · Ya Zhang · Qi Tian · Yanfeng Wang

[ West Building Exhibit Halls ABC ]

Federated Domain Generalization (FedDG) attempts to learn a global model in a privacy-preserving manner that generalizes well to new clients possibly with domain shift. Recent exploration mainly focuses on designing an unbiased training strategy within each individual domain. However, without the support of multi-domain data jointly in the mini-batch training, almost all methods cannot guarantee the generalization under domain shift. To overcome this problem, we propose a novel global objective incorporating a new variance reduction regularizer to encourage fairness. A novel FL-friendly method named Generalization Adjustment (GA) is proposed to optimize the above objective by dynamically calibrating the aggregation weights. The theoretical analysis of GA demonstrates the possibility to achieve a tighter generalization bound with an explicit re-weighted aggregation, substituting the implicit multi-domain data sharing that is only applicable to the conventional DG settings. Besides, the proposed algorithm is generic and can be combined with any local client training-based methods. Extensive experiments on several benchmark datasets have shown the effectiveness of the proposed method, with consistent improvements over several FedDG algorithms when used in combination. The source code is released at https://github.com/MediaBrain-SJTU/FedDG-GA.

Poster
Bo Li · Mikkel N. Schmidt · Tommy S. Alstrøm · Sebastian U. Stich

[ West Building Exhibit Halls ABC ]

Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.

Poster
Joshua C. Zhao · Ahmed Roushdy Elkordy · Atul Sharma · Yahya H. Ezzeldin · Salman Avestimehr · Saurabh Bagchi

[ West Building Exhibit Halls ABC ]

Secure aggregation promises a heightened level of privacy in federated learning, maintaining that a server only has access to a decrypted aggregate update. Within this setting, linear layer leakage methods are the only data reconstruction attacks able to scale and achieve a high leakage rate regardless of the number of clients or batch size. This is done through increasing the size of an injected fully-connected (FC) layer. We show that this results in a resource overhead which grows larger with an increasing number of clients. We show that this resource overhead is caused by an incorrect perspective in all prior work that treats an attack on an aggregate update in the same way as an individual update with a larger batch size. Instead, by attacking the update from the perspective that aggregation is combining multiple individual updates, this allows the application of sparsity to alleviate resource overhead. We show that the use of sparsity can decrease the model size overhead by over 327× and the computation time by 3.34× compared to SOTA while maintaining equivalent total leakage rate, 77% even with 1000 clients in aggregation.

Poster
Jiaming Zhang · Xingjun Ma · Qi Yi · Jitao Sang · Yu-Gang Jiang · Yaowei Wang · Changsheng Xu

[ West Building Exhibit Halls ABC ]

There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet. UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models. UEs typically are generated via a bilevel optimization framework with a surrogate model to remove (minimize) errors from the original samples, and then applied to protect the data against unknown target models. However, existing UE generation methods all rely on an ideal assumption called labelconsistency, where the hackers and protectors are assumed to hold the same label for a given sample. In this work, we propose and promote a more practical label-agnostic setting, where the hackers may exploit the protected data quite differently from the protectors. E.g., a m-class unlearnable dataset held by the protector may be exploited by the hacker as a n-class dataset. Existing UE generation methods are rendered ineffective in this challenging setting. To tackle this challenge, we present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations. Furthermore, we propose to leverage Vision-and-Language Pretrained Models (VLPMs) like CLIP as the surrogate model to improve the transferability of the crafted UCs to …

Poster
Shichao Dong · Jin Wang · Renhe Ji · Jiajun Liang · Haoqiang Fan · Zheng Ge

[ West Building Exhibit Halls ABC ]

In this paper, we analyse the generalization ability of binary classifiers for the task of deepfake detection. We find that the stumbling block to their generalization is caused by the unexpected learned identity representation on images. Termed as the Implicit Identity Leakage, this phenomenon has been qualitatively and quantitatively verified among various DNNs. Furthermore, based on such understanding, we propose a simple yet effective method named the ID-unaware Deepfake Detection Model to reduce the influence of this phenomenon. Extensive experimental results demonstrate that our method outperforms the state-of-the-art in both in-dataset and cross-dataset evaluation. The code is available at https://github.com/megvii-research/CADDM.

Poster
Kuofeng Gao · Yang Bai · Jindong Gu · Yong Yang · Shu-Tao Xia

[ West Building Exhibit Halls ABC ]

Backdoor defenses have been studied to alleviate the threat of deep neural networks (DNNs) being backdoor attacked and thus maliciously altered. Since DNNs usually adopt some external training data from an untrusted third party, a robust backdoor defense strategy during the training stage is of importance. We argue that the core of training-time defense is to select poisoned samples and to handle them properly. In this work, we summarize the training-time defenses from a unified framework as splitting the poisoned dataset into two data pools. Under our framework, we propose an adaptively splitting dataset-based defense (ASD). Concretely, we apply loss-guided split and meta-learning-inspired split to dynamically update two data pools. With the split clean data pool and polluted data pool, ASD successfully defends against backdoor attacks during training. Extensive experiments on multiple benchmark datasets and DNN models against six state-of-the-art backdoor attacks demonstrate the superiority of our ASD.

Poster
Sheng-Yen Chou · Pin-Yu Chen · Tsung-Yi Ho

[ West Building Exhibit Halls ABC ]

Diffusion models are state-of-the-art deep learning empowered generative models that are trained based on the principle of learning forward and reverse diffusion processes via progressive noise-addition and denoising. To gain a better understanding of the limitations and potential risks, this paper presents the first study on the robustness of diffusion models against backdoor attacks. Specifically, we propose BadDiffusion, a novel attack framework that engineers compromised diffusion processes during model training for backdoor implantation. At the inference stage, the backdoored diffusion model will behave just like an untampered generator for regular data inputs, while falsely generating some targeted outcome designed by the bad actor upon receiving the implanted trigger signal. Such a critical risk can be dreadful for downstream tasks and applications built upon the problematic model. Our extensive experiments on various backdoor attack settings show that BadDiffusion can consistently lead to compromised diffusion models with high utility and target specificity. Even worse, BadDiffusion can be made cost-effective by simply finetuning a clean pre-trained diffusion model to implant backdoors. We also explore some possible countermeasures for risk mitigation. Our results call attention to potential risks and possible misuse of diffusion models.

Poster
Mengxin Zheng · Qian Lou · Lei Jiang

[ West Building Exhibit Halls ABC ]

Vision Transformers (ViTs) have demonstrated the state-of-the-art performance in various vision-related tasks. The success of ViTs motivates adversaries to perform backdoor attacks on ViTs. Although the vulnerability of traditional CNNs to backdoor attacks is well-known, backdoor attacks on ViTs are seldom-studied. Compared to CNNs capturing pixel-wise local features by convolutions, ViTs extract global context information through patches and attentions. Naïvely transplanting CNN-specific backdoor attacks to ViTs yields only a low clean data accuracy and a low attack success rate. In this paper, we propose a stealth and practical ViT-specific backdoor attack TrojViT. Rather than an area-wise trigger used by CNN-specific backdoor attacks, TrojViT generates a patch-wise trigger designed to build a Trojan composed of some vulnerable bits on the parameters of a ViT stored in DRAM memory through patch salience ranking and attention-target loss. TrojViT further uses parameter distillation to reduce the bit number of the Trojan. Once the attacker inserts the Trojan into the ViT model by flipping the vulnerable bits, the ViT model still produces normal inference accuracy with benign inputs. But when the attacker embeds a trigger into an input, the ViT model is forced to classify the input to a predefined target class. We show that …

Poster
Weixin Chen · Dawn Song · Bo Li

[ West Building Exhibit Halls ABC ]

Diffusion models have achieved great success in a range of tasks, such as image synthesis and molecule design. As such successes hinge on large-scale training data collected from diverse sources, the trustworthiness of these collected data is hard to control or audit. In this work, we aim to explore the vulnerabilities of diffusion models under potential training data manipulations and try to answer: How hard is it to perform Trojan attacks on well-trained diffusion models? What are the adversarial targets that such Trojan attacks can achieve? To answer these questions, we propose an effective Trojan attack against diffusion models, TrojDiff, which optimizes the Trojan diffusion and generative processes during training. In particular, we design novel transitions during the Trojan diffusion process to diffuse adversarial targets into a biased Gaussian distribution and propose a new parameterization of the Trojan generative process that leads to an effective training objective for the attack. In addition, we consider three types of adversarial targets: the Trojaned diffusion models will always output instances belonging to a certain class from the in-domain distribution (In-D2D attack), out-of-domain distribution (Out-D2D-attack), and one specific instance (D2I attack). We evaluate TrojDiff on CIFAR-10 and CelebA datasets against both DDPM and DDIM …

Poster
Zikui Cai · Yaoteng Tan · M. Salman Asif

[ West Building Exhibit Halls ABC ]

We propose an approach for adversarial attacks on dense prediction models (such as object detectors and segmentation). It is well known that the attacks generated by a single surrogate model do not transfer to arbitrary (blackbox) victim models. Furthermore, targeted attacks are often more challenging than the untargeted attacks. In this paper, we show that a carefully designed ensemble can create effective attacks for a number of victim models. In particular, we show that normalization of the weights for individual models plays a critical role in the success of the attacks. We then demonstrate that by adjusting the weights of the ensemble according to the victim model can further improve the performance of the attacks. We performed a number of experiments for object detectors and segmentation to highlight the significance of the our proposed methods. Our proposed ensemble-based method outperforms existing blackbox attack methods for object detection and segmentation. Finally we show that our proposed method can also generate a single perturbation that can fool multiple blackbox detection and segmentation models simultaneously.

Poster
Yunrui Yu · Cheng-Zhong Xu

[ West Building Exhibit Halls ABC ]

Attackers can deceive neural networks by adding human imperceptive perturbations to their input data; this reveals the vulnerability and weak robustness of current deep-learning networks. Many attack techniques have been proposed to evaluate the model’s robustness. Gradient-based attacks suffer from severely overestimating the robustness. This paper identifies that the relative error in calculated gradients caused by floating-point errors, including floating-point underflow and rounding errors, is a fundamental reason why gradient-based attacks fail to accurately assess the model’s robustness. Although it is hard to eliminate the relative error in the gradients, we can control its effect on the gradient-based attacks. Correspondingly, we propose an efficient loss function by minimizing the detrimental impact of the floating-point errors on the attacks. Experimental results show that it is more efficient and reliable than other loss functions when examined across a wide range of defence mechanisms.

Poster
Iuri Frosio · Jan Kautz

[ West Building Exhibit Halls ABC ]

Many defenses against adversarial attacks (e.g. robust classifiers, randomization, or image purification) use countermeasures put to work only after the attack has been crafted. We adopt a different perspective to introduce A^5 (Adversarial Augmentation Against Adversarial Attacks), a novel framework including the first certified preemptive defense against adversarial attacks. The main idea is to craft a defensive perturbation to guarantee that any attack (up to a given magnitude) towards the input in hand will fail. To this aim, we leverage existing automatic perturbation analysis tools for neural networks. We study the conditions to apply A^5 effectively, analyze the importance of the robustness of the to-be-defended classifier, and inspect the appearance of the robustified images. We show effective on-the-fly defensive augmentation with a robustifier network that ignores the ground truth label, and demonstrate the benefits of robustifier and classifier co-training. In our tests, A^5 consistently beats state of the art certified defenses on MNIST, CIFAR10, FashionMNIST and Tinyimagenet. We also show how to apply A^5 to create certifiably robust physical objects. The released code at https://github.com/NVlabs/A5 allows experimenting on a wide range of scenarios beyond the man-in-the-middle attack tested here, including the case of physical attacks.

Poster
Minjing Dong · Chang Xu

[ West Building Exhibit Halls ABC ]

Deep Neural Networks show superior performance in various tasks but are vulnerable to adversarial attacks. Most defense techniques are devoted to the adversarial training strategies, however, it is difficult to achieve satisfactory robust performance only with traditional adversarial training. We mainly attribute it to that aggressive perturbations which lead to the loss increment can always be found via gradient ascent in white-box setting. Although some noises can be involved to prevent attacks from deriving precise gradients on inputs, there exist trade-offs between the defense capability and natural generalization. Taking advantage of the properties of random projection, we propose to replace part of convolutional filters with random projection filters, and theoretically explore the geometric representation preservation of proposed synthesized filters via Johnson-Lindenstrauss lemma. We conduct sufficient evaluation on multiple networks and datasets. The experimental results showcase the superiority of proposed random projection filters to state-of-the-art baselines. The code is available on https://github.com/UniSerj/Random-Projection-Filters.

Poster
Bilel Tarchoun · Anouar Ben Khalifa · Mohamed Ali Mahjoub · Nael Abu-Ghazaleh · Ihsen Alouani

[ West Building Exhibit Halls ABC ]

Real-world adversarial physical patches were recently shown to be successful in compromising state-of-the-art models in a variety of computer vision applications. The most promising defenses that are based on either input gradient or features analyses have been shown to be compromised by recent GAN-based adaptive attacks that generate realistic/naturalistic patches. In this paper, we propose Jedi, a new defense against adversarial patches that is resilient to realistic patch attacks, and also improves detection and recovery compared to the state of the art. Jedi leverages two new ideas: (1) it improves the identification of potential patch regions using entropy analysis: we show that the entropy of adversarial patches is high, even in naturalistic patches; and (2) it improves the localization of adversarial patches, using an autoencoder that is able to complete patch regions and filter out normal regions with high entropy that are not part of a patch. Jedi achieves high precision adversarial patch localization, which we show is critical to successfully repair the images. Since Jedi relies on an input entropy analysis, it is model-agnostic, and can be applied on pre-trained off-the-shelf models without changes to the training or inference of the protected models. Jedi detects on average 90% of …

Poster
Aishan Liu · Shiyu Tang · Siyuan Liang · Ruihao Gong · Boxi Wu · Xianglong Liu · Dacheng Tao

[ West Building Exhibit Halls ABC ]

Adversarial training has been demonstrated to be one of the most effective remedies for defending adversarial examples, yet it often suffers from the huge robustness generalization gap on unseen testing adversaries, deemed as the adversarially robust generalization problem. Despite the preliminary understandings devoted to adversarially robust generalization, little is known from the architectural perspective. To bridge the gap, this paper for the first time systematically investigated the relationship between adversarially robust generalization and architectural design. In particular, we comprehensively evaluated 20 most representative adversarially trained architectures on ImageNette and CIFAR-10 datasets towards multiple l_p-norm adversarial attacks. Based on the extensive experiments, we found that, under aligned settings, Vision Transformers (e.g., PVT, CoAtNet) often yield better adversarially robust generalization while CNNs tend to overfit on specific attacks and fail to generalize on multiple adversaries. To better understand the nature behind it, we conduct theoretical analysis via the lens of Rademacher complexity. We revealed the fact that the higher weight sparsity contributes significantly towards the better adversarially robust generalization of Transformers, which can be often achieved by the specially-designed attention blocks. We hope our paper could help to better understand the mechanism for designing robust DNNs. Our model weights can be found …

Poster
Yong Guo · David Stutz · Bernt Schiele

[ West Building Exhibit Halls ABC ]

Despite their success, vision transformers still remain vulnerable to image corruptions, such as noise or blur. Indeed, we find that the vulnerability mainly stems from the unstable self-attention mechanism, which is inherently built upon patch-based inputs and often becomes overly sensitive to the corruptions across patches. For example, when we only occlude a small number of patches with random noise (e.g., 10%), these patch corruptions would lead to severe accuracy drops and greatly distract intermediate attention layers. To address this, we propose a new training method that improves the robustness of transformers from a new perspective -- reducing sensitivity to patch corruptions (RSPC). Specifically, we first identify and occlude/corrupt the most vulnerable patches and then explicitly reduce sensitivity to them by aligning the intermediate features between clean and corrupted examples. We highlight that the construction of patch corruptions is learned adversarially to the following feature alignment process, which is particularly effective and essentially different from existing methods. In experiments, our RSPC greatly improves the stability of attention layers and consistently yields better robustness on various benchmarks, including CIFAR-10/100-C, ImageNet-A, ImageNet-C, and ImageNet-P.

Poster
Xiao Yang · Chang Liu · Longlong Xu · Yikai Wang · Yinpeng Dong · Ning Chen · Hang Su · Jun Zhu

[ West Building Exhibit Halls ABC ]

Face recognition is a prevailing authentication solution in numerous biometric applications. Physical adversarial attacks, as an important surrogate, can identify the weaknesses of face recognition systems and evaluate their robustness before deployed. However, most existing physical attacks are either detectable readily or ineffective against commercial recognition systems. The goal of this work is to develop a more reliable technique that can carry out an end-to-end evaluation of adversarial robustness for commercial systems. It requires that this technique can simultaneously deceive black-box recognition models and evade defensive mechanisms. To fulfill this, we design adversarial textured 3D meshes (AT3D) with an elaborate topology on a human face, which can be 3D-printed and pasted on the attacker’s face to evade the defenses. However, the mesh-based optimization regime calculates gradients in high-dimensional mesh space, and can be trapped into local optima with unsatisfactory transferability. To deviate from the mesh-based space, we propose to perturb the low-dimensional coefficient space based on 3D Morphable Model, which significantly improves black-box transferability meanwhile enjoying faster search efficiency and better visual quality. Extensive experiments in digital and physical scenarios show that our method effectively explores the security vulnerabilities of multiple popular commercial services, including three recognition APIs, four anti-spoofing …

Poster
Zhendong Wang · Jianmin Bao · Wengang Zhou · Weilun Wang · Houqiang Li

[ West Building Exhibit Halls ABC ]

Existing face forgery detection models try to discriminate fake images by detecting only spatial artifacts (e.g., generative artifacts, blending) or mainly temporal artifacts (e.g., flickering, discontinuity). They may experience significant performance degradation when facing out-domain artifacts. In this paper, we propose to capture both spatial and temporal artifacts in one model for face forgery detection. A simple idea is to leverage a spatiotemporal model (3D ConvNet). However, we find that it may easily rely on one type of artifact and ignore the other. To address this issue, we present a novel training strategy called AltFreezing for more general face forgery detection. The AltFreezing aims to encourage the model to detect both spatial and temporal artifacts. It divides the weights of a spatiotemporal network into two groups: spatial- and temporal-related. Then the two groups of weights are alternately frozen during the training process so that the model can learn spatial and temporal features to distinguish real or fake videos. Furthermore, we introduce various video-level data augmentation methods to improve the generalization capability of the forgery detection model. Extensive experiments show that our framework outperforms existing methods in terms of generalization to unseen manipulations and datasets.


Panel: History and Future of Artificial Intelligence and Computer Vision Tue 20 Jun 02:00 p.m.  

Chelsea Finn · Dan Huttenlocher · Linda Shapiro · Jamie Shotton

Award Candidates TUE Tue 20 Jun 03:00 p.m.  

Andreas Geiger

Poster Session TUE-PM Tue 20 Jun 04:30 p.m.  

Poster
Alankar Kotwal · Anat Levin · Ioannis Gkioulekas

[ West Building Exhibit Halls ABC ]

We introduce an interferometric technique for passive time-of-flight imaging and depth sensing at micrometer axial resolutions. Our technique uses a full-field Michelson interferometer, modified to use sunlight as the only light source. The large spectral bandwidth of sunlight makes it possible to acquire micrometer-resolution time-resolved scene responses, through a simple axial scanning operation. Additionally, the angular bandwidth of sunlight makes it possible to capture time-of-flight measurements insensitive to indirect illumination effects, such as interreflections and subsurface scattering. We build an experimental prototype that we operate outdoors, under direct sunlight, and in adverse environment conditions such as machine vibrations and vehicle traffic. We use this prototype to demonstrate, for the first time, passive imaging capabilities such as micrometer-scale depth sensing robust to indirect illumination, direct-only imaging, and imaging through diffusers.

Poster
Peng Wang · Yuan Liu · Zhaoxi Chen · Lingjie Liu · Ziwei Liu · Taku Komura · Christian Theobalt · Wenping Wang

[ West Building Exhibit Halls ABC ]

This paper presents a novel grid-based NeRF called F^2-NeRF (Fast-Free-NeRF) for novel view synthesis, which enables arbitrary input camera trajectories and only costs a few minutes for training. Existing fast grid-based NeRF training frameworks, like Instant-NGP, Plenoxels, DVGO, or TensoRF, are mainly designed for bounded scenes and rely on space warping to handle unbounded scenes. Existing two widely-used space-warping methods are only designed for the forward-facing trajectory or the 360° object-centric trajectory but cannot process arbitrary trajectories. In this paper, we delve deep into the mechanism of space warping to handle unbounded scenes. Based on our analysis, we further propose a novel space-warping method called perspective warping, which allows us to handle arbitrary trajectories in the grid-based NeRF framework. Extensive experiments demonstrate that F^2-NeRF is able to use the same perspective warping to render high-quality images on two standard datasets and a new free trajectory dataset collected by us.

Poster
Wenjing Bian · Zirui Wang · Kejie Li · Jia-Wang Bian · Victor Adrian Prisacariu

[ West Building Exhibit Halls ABC ]

Training a Neural Radiance Field (NeRF) without pre-computed camera poses is challenging. Recent advances in this direction demonstrate the possibility of jointly optimising a NeRF and camera poses in forward-facing scenes. However, these methods still face difficulties during dramatic camera movement. We tackle this challenging problem by incorporating undistorted monocular depth priors. These priors are generated by correcting scale and shift parameters during training, with which we are then able to constrain the relative poses between consecutive frames. This constraint is achieved using our proposed novel loss functions. Experiments on real-world indoor and outdoor scenes show that our method can handle challenging camera trajectories and outperforms existing methods in terms of novel view rendering quality and pose estimation accuracy. Our project page is https://nope-nerf.active.vision.

Poster
Peng Wang · Lingzhe Zhao · Ruijie Ma · Peidong Liu

[ West Building Exhibit Halls ABC ]

Neural Radiance Fields (NeRF) have received considerable attention recently, due to its impressive capability in photo-realistic 3D reconstruction and novel view synthesis, given a set of posed camera images. Earlier work usually assumes the input images are of good quality. However, image degradation (e.g. image motion blur in low-light conditions) can easily happen in real-world scenarios, which would further affect the rendering quality of NeRF. In this paper, we present a novel bundle adjusted deblur Neural Radiance Fields (BAD-NeRF), which can be robust to severe motion blurred images and inaccurate camera poses. Our approach models the physical image formation process of a motion blurred image, and jointly learns the parameters of NeRF and recovers the camera motion trajectories during exposure time. In experiments, we show that by directly modeling the real physical image formation process, BAD-NeRF achieves superior performance over prior works on both synthetic and real datasets. Code and data are available at https://github.com/WU-CVGL/BAD-NeRF.

Poster
Jamie Wynn · Daniyar Turmukhambetov

[ West Building Exhibit Halls ABC ]

Under good conditions, Neural Radiance Fields (NeRFs) have shown impressive results on novel view synthesis tasks. NeRFs learn a scene’s color and density fields by minimizing the photometric discrepancy between training views and differentiable renderings of the scene. Once trained from a sufficient set of views, NeRFs can generate novel views from arbitrary camera positions. However, the scene geometry and color fields are severely under-constrained, which can lead to artifacts, especially when trained with few input views. To alleviate this problem we learn a prior over scene geometry and color, using a denoising diffusion model (DDM). Our DDM is trained on RGBD patches of the synthetic Hypersim dataset and can be used to predict the gradient of the logarithm of a joint probability distribution of color and depth patches. We show that, these gradients of logarithms of RGBD patch priors serve to regularize geometry and color of a scene. During NeRF training, random RGBD patches are rendered and the estimated gradient of the log-likelihood is backpropagated to the color and density fields. Evaluations on LLFF, the most relevant dataset, show that our learned prior achieves improved quality in the reconstructed geometry and improved generalization to novel views. Evaluations on DTU …

Poster
Prune Truong · Marie-Julie Rakotosaona · Fabian Manhardt · Federico Tombari

[ West Building Exhibit Halls ABC ]

Neural Radiance Field (NeRF) has recently emerged as a powerful representation to synthesize photorealistic novel views. While showing impressive performance, it relies on the availability of dense input views with highly accurate camera poses, thus limiting its application in real-world scenarios. In this work, we introduce Sparse Pose Adjusting Radiance Field (SPARF), to address the challenge of novel-view synthesis given only few wide-baseline input images (as low as 3) with noisy camera poses. Our approach exploits multi-view geometry constraints in order to jointly learn the NeRF and refine the camera poses. By relying on pixel matches extracted between the input views, our multi-view correspondence objective enforces the optimized scene and camera poses to converge to a global and geometrically accurate solution. Our depth consistency loss further encourages the reconstructed scene to be consistent from any viewpoint. Our approach sets a new state of the art in the sparse-view regime on multiple challenging datasets.

Poster
Rahul Goel · Dhawal Sirikonda · Saurabh Saini · P. J. Narayanan

[ West Building Exhibit Halls ABC ]

Radiance Fields (RF) are popular to represent casually-captured scenes for new view synthesis and several applications beyond it. Mixed reality on personal spaces needs understanding and manipulating scenes represented as RFs, with semantic segmentation of objects as an important step. Prior segmentation efforts show promise but don’t scale to complex objects with diverse appearance. We present the ISRF method to interactively segment objects with fine structure and appearance. Nearest neighbor feature matching using distilled semantic features identifies high-confidence seed regions. Bilateral search in a joint spatio-semantic space grows the region to recover accurate segmentation. We show state-of-the-art results of segmenting objects from RFs and compositing them to another scene, changing appearance, etc., and an interactive segmentation tool that others can use.

Poster
Sungheon Park · Minjung Son · Seokhwan Jang · Young Chun Ahn · Ji-Yeon Kim · Nahyup Kang

[ West Building Exhibit Halls ABC ]

Temporal interpolation often plays a crucial role to learn meaningful representations in dynamic scenes. In this paper, we propose a novel method to train spatiotemporal neural radiance fields of dynamic scenes based on temporal interpolation of feature vectors. Two feature interpolation methods are suggested depending on underlying representations, neural networks or grids. In the neural representation, we extract features from space-time inputs via multiple neural network modules and interpolate them based on time frames. The proposed multi-level feature interpolation network effectively captures features of both short-term and long-term time ranges. In the grid representation, space-time features are learned via four-dimensional hash grids, which remarkably reduces training time. The grid representation shows more than 100 times faster training speed than the previous neural-net-based methods while maintaining the rendering quality. Concatenating static and dynamic features and adding a simple smoothness term further improve the performance of our proposed models. Despite the simplicity of the model architectures, our method achieved state-of-the-art performance both in rendering quality for the neural representation and in training speed for the grid representation.

Poster
Lingzhi Li · Zhen Shen · Zhongshu Wang · Li Shen · Liefeng Bo

[ West Building Exhibit Halls ABC ]

Approximating radiance fields with discretized volumetric grids is one of promising directions for improving NeRFs, represented by methods like DVGO, Plenoxels and TensoRF, which achieve super-fast training convergence and real-time rendering. However, these methods typically require a tremendous storage overhead, costing up to hundreds of megabytes of disk space and runtime memory for a single scene. We address this issue in this paper by introducing a simple yet effective framework, called vector quantized radiance fields (VQRF), for compressing these volume-grid-based radiance fields. We first present a robust and adaptive metric for estimating redundancy in grid models and performing voxel pruning by better exploring intermediate outputs of volumetric rendering. A trainable vector quantization is further proposed to improve the compactness of grid models. In combination with an efficient joint tuning strategy and post-processing, our method can achieve a compression ratio of 100× by reducing the overall model size to 1 MB with negligible loss on visual quality. Extensive experiments demonstrate that the proposed framework is capable of achieving unrivaled performance and well generalization across multiple methods with distinct volumetric structures, facilitating the wide use of volumetric radiance fields methods in real-world applications. Code is available at https://github.com/AlgoHunt/VQRF.

Poster
Kang Han · Wei Xiang

[ West Building Exhibit Halls ABC ]

Rendering novel views from captured multi-view images has made considerable progress since the emergence of the neural radiance field. This paper aims to further advance the quality of view rendering by proposing a novel approach dubbed the neural radiance feature field (NRFF). We first propose a multiscale tensor decomposition scheme to organize learnable features so as to represent scenes from coarse to fine scales. We demonstrate many benefits of the proposed multiscale representation, including more accurate scene shape and appearance reconstruction, and faster convergence compared with the single-scale representation. Instead of encoding view directions to model view-dependent effects, we further propose to encode the rendering equation in the feature space by employing the anisotropic spherical Gaussian mixture predicted from the proposed multiscale representation. The proposed NRFF improves state-of-the-art rendering results by over 1 dB in PSNR on both the NeRF and NSVF synthetic datasets. A significant improvement has also been observed on the real-world Tanks & Temples dataset. Code can be found at https://github.com/imkanghan/nrff.

Poster
Yuechen Zhang · Zexin He · Jinbo Xing · Xufeng Yao · Jiaya Jia

[ West Building Exhibit Halls ABC ]

Current 3D scene stylization methods transfer textures and colors as styles using arbitrary style references, lacking meaningful semantic correspondences. We introduce Reference-Based Non-Photorealistic Radiance Fields (Ref-NPR) to address this limitation. This controllable method stylizes a 3D scene using radiance fields with a single stylized 2D view as a reference. We propose a ray registration process based on the stylized reference view to obtain pseudo-ray supervision in novel views. Then we exploit semantic correspondences in content images to fill occluded regions with perceptually similar styles, resulting in non-photorealistic and continuous novel view sequences. Our experimental results demonstrate that Ref-NPR outperforms existing scene and video stylization methods regarding visual quality and semantic correspondence. The code and data are publicly available on the project page at https://ref-npr.github.io.

Poster
Sida Peng · Yunzhi Yan · Qing Shuai · Hujun Bao · Xiaowei Zhou

[ West Building Exhibit Halls ABC ]

This paper introduces a novel representation of volumetric videos for real-time view synthesis of dynamic scenes. Recent advances in neural scene representations demonstrate their remarkable capability to model and render complex static scenes, but extending them to represent dynamic scenes is not straightforward due to their slow rendering speed or high storage cost. To solve this problem, our key idea is to represent the radiance field of each frame as a set of shallow MLP networks whose parameters are stored in 2D grids, called MLP maps, and dynamically predicted by a 2D CNN decoder shared by all frames. Representing 3D scenes with shallow MLPs significantly improves the rendering speed, while dynamically predicting MLP parameters with a shared 2D CNN instead of explicitly storing them leads to low storage cost. Experiments show that the proposed approach achieves state-of-the-art rendering quality on the NHR and ZJU-MoCap datasets, while being efficient for real-time rendering with a speed of 41.7 fps for 512 × 512 images on an RTX 3090 GPU. The code is available at https://zju3dv.github.io/mlp_maps/.

Poster
Wei Dong · Christopher Choy · Charles Loop · Or Litany · Yuke Zhu · Anima Anandkumar

[ West Building Exhibit Halls ABC ]

Indoor scene reconstruction from monocular images has long been sought after by augmented reality and robotics developers. Recent advances in neural field representations and monocular priors have led to remarkable results in scene-level surface reconstructions. The reliance on Multilayer Perceptrons (MLP), however, significantly limits speed in training and rendering. In this work, we propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without MLPs. Our globally sparse and locally dense data structure exploits surfaces’ spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data such as color and semantic labels. To apply this representation to monocular scene reconstruction, we develop a scale calibration algorithm for fast geometric initialization from monocular depth priors. We apply differentiable volume rendering from this initialization to refine details with fast convergence. We also introduce efficient high-dimensional Continuous Random Fields (CRFs) to further exploit the semantic-geometry consistency between scene objects. Experiments show that our approach is 10× faster in training and 100× faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.

Poster
Zhengqi Li · Qianqian Wang · Forrester Cole · Richard Tucker · Noah Snavely

[ West Building Exhibit Halls ABC ]

We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene. State-of-the-art methods based on temporally varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive results on this task. However, for long videos with complex object motions and uncontrolled camera trajectories,these methods can produce blurry or inaccurate renderings, hampering their use in real-world applications. Instead of encoding the entire dynamic scene within the weights of MLPs, we present a new approach that addresses these limitations by adopting a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views in a scene motion-aware manner.Our system retains the advantages of prior methods in its ability to model complex scenes and view-dependent effects,but also enables synthesizing photo-realistic novel views from long videos featuring complex scene dynamics with unconstrained camera trajectories. We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets, and also apply our approach to in-the-wild videos with challenging camera and object motion, where prior methods fail to produce high-quality renderings

Poster
Michael Fischer · Tobias Ritschel

[ West Building Exhibit Halls ABC ]

Current differentiable renderers provide light transport gradients with respect to arbitrary scene parameters. However, the mere existence of these gradients does not guarantee useful update steps in an optimization. Instead, inverse rendering might not converge due to inherent plateaus, i.e., regions of zero gradient, in the objective function. We propose to alleviate this by convolving the high-dimensional rendering function that maps scene parameters to images with an additional kernel that blurs the parameter space. We describe two Monte Carlo estimators to compute plateau-free gradients efficiently, i.e., with low variance, and show that these translate into net-gains in optimization error and runtime performance. Our approach is a straightforward extension to both black-box and differentiable renderers and enables the successful optimization of problems with intricate light transport, such as caustics or global illumination, that existing differentiable path tracers do not converge on. Our code is at github.com/mfischer-ucl/prdpt.

Poster
Haoqian Wu · Zhipeng Hu · Lincheng Li · Yongqiang Zhang · Changjie Fan · Xin Yu

[ West Building Exhibit Halls ABC ]

Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images. In order to achieve better decomposition, recent approaches attempt to model indirect illuminations reflected from different materials via Spherical Gaussians (SG), which, however, tends to blur the high-frequency reflection details. In this paper, we propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images, while considering near-field indirect illumination. In a nutshell, we introduce the Monte Carlo sampling based path tracing and cache the indirect illumination as neural radiance, enabling a physics-faithful and easy-to-optimize inverse rendering method. To enhance efficiency and practicality, we leverage SG to represent the smooth environment illuminations and apply importance sampling techniques. To supervise indirect illuminations from unobserved directions, we develop a novel radiance consistency constraint between implicit neural radiance and path tracing results of unobserved rays along with the joint optimization of materials and illuminations, thus significantly improving the decomposition performance. Extensive experiments demonstrate that our method outperforms the state-of-the-art on multiple synthetic and real datasets, especially in terms of inter-reflection decomposition.

Poster
Ziang Cheng · Junxuan Li · Hongdong Li

[ West Building Exhibit Halls ABC ]

This paper proposes a practical photometric solution for the challenging problem of in-the-wild inverse rendering under unknown ambient lighting. Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone. The key idea is to exploit smartphone’s built-in flashlight as a minimally controlled light source, and decompose image intensities into two photometric components -- a static appearance corresponds to ambient flux, plus a dynamic reflection induced by the moving flashlight. Our method does not require flash/non-flash images to be captured in pairs. Building on the success of neural light fields, we use an off-the-shelf method to capture the ambient reflections, while the flashlight component enables physically accurate photometric constraints to decouple reflectance and illumination. Compared to existing inverse rendering methods, our setup is applicable to non-darkroom environments yet sidesteps the inherent difficulties of explicit solving ambient reflections. We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques. Finally, our neural reconstruction can be easily exported to PBR textured triangle mesh ready for industrial renderers. Our source code and data are released to https://github.com/za-cheng/WildLight

Poster
Taotao Zhou · Kai He · Di Wu · Teng Xu · Qixuan Zhang · Kuixiang Shao · Wenzheng Chen · Lan Xu · Jingyi Yu

[ West Building Exhibit Halls ABC ]

Human modeling and relighting are two fundamental problems in computer vision and graphics, where high-quality datasets can largely facilitate related research. However, most existing human datasets only provide multi-view human images captured under the same illumination. Although valuable for modeling tasks, they are not readily used in relighting problems. To promote research in both fields, in this paper, we present UltraStage, a new 3D human dataset that contains more than 2,000 high-quality human assets captured under both multi-view and multi-illumination settings. Specifically, for each example, we provide 32 surrounding views illuminated with one white light and two gradient illuminations. In addition to regular multi-view images, gradient illuminations help recover detailed surface normal and spatially-varying material maps, enabling various relighting applications. Inspired by recent advances in neural representation, we further interpret each example into a neural human asset which allows novel view synthesis under arbitrary lighting conditions. We show our neural human assets can achieve extremely high capture performance and are capable of representing fine details such as facial wrinkles and cloth folds. We also validate UltraStage in single image relighting tasks, training neural networks with virtual relighted data from neural assets and demonstrating realistic rendering improvements over prior arts. UltraStage …

Poster
Norman Müller · Yawar Siddiqui · Lorenzo Porzi · Samuel Rota Bulò · Peter Kontschieder · Matthias Nießner

[ West Building Exhibit Halls ABC ]

We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation like masked completion or single-view 3D synthesis at inference time.

Poster
Tianyuan Zhang · Mark Sheinin · Dorian Chan · Mark Rau · Matthew O’Toole · Srinivasa G. Narasimhan

[ West Building Exhibit Halls ABC ]

The subtle vibrations on an object’s surface contain information about the object’s physical properties and its interaction with the environment. Prior works imaged surface vibration to recover the object’s material properties via modal analysis, which discards the transient vibrations propagating immediately after the object is disturbed. Conversely, prior works that captured transient vibrations focused on recovering localized signals (e.g., recording nearby sound sources), neglecting the spatiotemporal relationship between vibrations at different object points. In this paper, we extract information from the transient surface vibrations simultaneously measured at a sparse set of object points using the dual-shutter camera described by Sheinin[31]. We model the geometry of an elastic wave generated shortly after an object’s surface is disturbed (e.g., a knock or a footstep), and use the model to localize the disturbance source for various materials (e.g., wood, plastic, tile). We also show that transient object vibrations contain additional cues about the impact force and the impacting object’s material properties. We demonstrate our approach in applications like localizing the strikes of a ping-pong ball on a table mid-play and recovering the footsteps’ locations by imaging the floor vibrations they create.

Poster
Byeongjoo Ahn · Michael De Zeeuw · Ioannis Gkioulekas · Aswin C. Sankaranarayanan

[ West Building Exhibit Halls ABC ]

We introduce a method that recovers full-surround 3D reconstructions from a single kaleidoscopic image using a neural surface representation. Full-surround 3D reconstruction is critical for many applications, such as augmented and virtual reality. A kaleidoscope, which uses a single camera and multiple mirrors, is a convenient way of achieving full-surround coverage, as it redistributes light directions and thus captures multiple viewpoints in a single image. This enables single-shot and dynamic full-surround 3D reconstruction. However, using a kaleidoscopic image for multi-view stereo is challenging, as we need to decompose the image into multi-view images by identifying which pixel corresponds to which virtual camera, a process we call labeling. To address this challenge, pur approach avoids the need to explicitly estimate labels, but instead “sculpts” a neural surface representation through the careful use of silhouette, background, foreground, and texture information present in the kaleidoscopic image. We demonstrate the advantages of our method in a range of simulated and real experiments, on both static and dynamic scenes.

Poster
Yongqiang Zhang · Zhipeng Hu · Haoqian Wu · Minda Zhao · Lincheng Li · Zhengxia Zou · Changjie Fan

[ West Building Exhibit Halls ABC ]

Learning surface by neural implicit rendering has been a promising way for multi-view reconstruction in recent years. Existing neural surface reconstruction methods, such as NeuS and VolSDF, can produce reliable meshes from multi-view posed images. Although they build a bridge between volume rendering and Signed Distance Function (SDF), the accuracy is still limited. In this paper, we argue that this limited accuracy is due to the bias of their volume rendering strategies, especially when the viewing direction is close to be tangent to the surface. We revise and provide an additional condition for the unbiased volume rendering. Following this analysis, we propose a new rendering method by scaling the SDF field with the angle between the viewing direction and the surface normal vector. Experiments on simulated data indicate that our rendering method reduces the bias of SDF-based volume rendering. Moreover, there still exists non-negligible bias when the learnable standard deviation of SDF is large at early stage, which means that it is hard to supervise the rendered depth with depth priors. Alternatively we supervise zero-level set with surface points obtained from a pre-trained Multi-View Stereo network. We evaluate our method on the DTU dataset and show that it outperforms the …

Poster
Jiahui Huang · Zan Gojcic · Matan Atzmon · Or Litany · Sanja Fidler · Francis Williams

[ West Building Exhibit Halls ABC ]

We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud. Our approach builds upon the recently introduced Neural Kernel Fields (NKF) representation. It enjoys similar generalization capabilities to NKF, while simultaneously addressing its main limitations: (a) We can scale to large scenes through compactly supported kernel functions, which enable the use of memory-efficient sparse linear solvers. (b) We are robust to noise, through a gradient fitting solve. (c) We minimize training requirements, enabling us to learn from any dataset of dense oriented points, and even mix training data consisting of objects and scenes at different scales. Our method is capable of reconstructing millions of points in a few seconds, and handling very large scenes in an out-of-core fashion. We achieve state-of-the-art results on reconstruction benchmarks consisting of single objects (ShapeNet, ABC), indoor scenes (ScanNet, Matterport3D), and outdoor scenes (CARLA, Waymo).

Poster
Mingye Xu · Mutian Xu · Tong He · Wanli Ouyang · Yali Wang · Xiaoguang Han · Yu Qiao

[ West Building Exhibit Halls ABC ]

Masked Modeling (MM) has demonstrated widespread success in various vision challenges, by reconstructing masked visual patches. Yet, applying MM for large-scale 3D scenes remains an open problem due to the data sparsity and scene complexity. The conventional random masking paradigm used in 2D images often causes a high risk of ambiguity when recovering the masked region of 3D scenes. To this end, we propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points, effectively enhancing the pretext masking task for 3D scene understanding. Integrated with a progressive reconstruction manner, our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction. Besides, such scenes with progressive masking ratios can also serve to self-distill their intrinsic spatial consistency, requiring to learn the consistent representations from unmasked areas. By elegantly combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded. We conduct comprehensive experiments on a host of downstream tasks. The consistent improvement (e.g., +6.1% mAP@0.5 on object detection and +2.2% mIoU on semantic segmentation) demonstrates the superiority of our approach.

Poster
Dario Pavllo · David Joseph Tan · Marie-Julie Rakotosaona · Federico Tombari

[ West Building Exhibit Halls ABC ]

Neural Radiance Fields (NeRF) coupled with GANs represent a promising direction in the area of 3D reconstruction from a single view, owing to their ability to efficiently model arbitrary topologies. Recent work in this area, however, has mostly focused on synthetic datasets where exact ground-truth poses are known, and has overlooked pose estimation, which is important for certain downstream applications such as augmented reality (AR) and robotics. We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available. Our approach recovers an SDF-parameterized 3D shape, pose, and appearance from a single image of an object, without exploiting multiple views during training. More specifically, we leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution which is then refined via optimization. Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios. We demonstrate state-of-the-art results on a variety of real and synthetic benchmarks.

Poster
Yinghao Xu · Menglei Chai · Zifan Shi · Sida Peng · Ivan Skorokhodov · Aliaksandr Siarohin · Ceyuan Yang · Yujun Shen · Hsin-Ying Lee · Bolei Zhou · Sergey Tulyakov

[ West Building Exhibit Halls ABC ]

Existing 3D-aware image synthesis approaches mainly focus on generating a single canonical object and show limited capacity in composing a complex scene containing a variety of objects. This work presents DisCoScene: a 3D-aware generative model for high-quality and controllable scene synthesis. The key ingredient of our method is a very abstract object-level representation (i.e., 3D bounding boxes without semantic annotation) as the scene layout prior, which is simple to obtain, general to describe various scene contents, and yet informative to disentangle objects and background. Moreover, it serves as an intuitive user control for scene editing. Based on such a prior, the proposed model spatially disentangles the whole scene into object-centric generative radiance fields by learning on only 2D images with the global-local discrimination. Our model obtains the generation fidelity and editing flexibility of individual objects while being able to efficiently compose objects and the background into a complete scene. We demonstrate state-of-the-art performance on many scene datasets, including the challenging Waymo outdoor dataset. Our code will be made publicly available.

Poster
Chi-Chong Wong

[ West Building Exhibit Halls ABC ]

Triangle mesh segmentation is an important task in 3D shape analysis, especially in applications such as digital humans and AR/VR. Transformer model is inherently permutation-invariant to input, which makes it a suitable candidate model for 3D mesh processing. However, two main challenges involved in adapting Transformer from natural languages to 3D mesh are yet to be solved, such as i) extracting the multi-scale information of mesh data in an adaptive manner; ii) capturing geometric structures of mesh data as the discriminative characteristics of the shape. Current point based Transformer models fail to tackle such challenges and thus provide inferior performance for discretized surface segmentation. In this work, heat diffusion based method is exploited to tackle these problems. A novel Transformer model called MeshFormer is proposed, which i) integrates Heat Diffusion method into Multi-head Self-Attention operation (HDMSA) to adaptively capture the features from local neighborhood to global contexts; ii) applies a novel Heat Kernel Signature based Structure Encoding (HKSSE) to embed the intrinsic geometric structures of mesh instances into Transformer for structure-aware processing. Extensive experiments on triangle mesh segmentation validate the effectiveness of the proposed MeshFormer model and show significant improvements over current state-of-the-art methods.

Poster
Yu Deng · Baoyuan Wang · Heung-Yeung Shum

[ West Building Exhibit Halls ABC ]

A key challenge for novel view synthesis of monocular portrait images is 3D consistency under continuous pose variations. Most existing methods rely on 2D generative models which often leads to obvious 3D inconsistency artifacts. We present a 3D-consistent novel view synthesis approach for monocular portrait images based on a recent proposed 3D-aware GAN, namely Generative Radiance Manifolds (GRAM), which has shown strong 3D consistency at multiview image generation of virtual subjects via the radiance manifolds representation. However, simply learning an encoder to map a real image into the latent space of GRAM can only reconstruct coarse radiance manifolds without faithful fine details, while improving the reconstruction fidelity via instance-specific optimization is time-consuming. We introduce a novel detail manifolds reconstructor to learn 3D-consistent fine details on the radiance manifolds from monocular images, and combine them with the coarse radiance manifolds for high-fidelity reconstruction. The 3D priors derived from the coarse radiance manifolds are used to regulate the learned details to ensure reasonable synthesized results at novel views. Trained on in-the-wild 2D images, our method achieves high-fidelity and 3D-consistent portrait synthesis largely outperforming the prior art. Project page: https://yudeng.github.io/GRAMInverter/

Poster
Kangle Deng · Gengshan Yang · Deva Ramanan · Jun-Yan Zhu

[ West Building Exhibit Halls ABC ]

We propose pix2pix3D, a 3D-aware conditional generative model for controllable photorealistic image synthesis. Given a 2D label map, such as a segmentation or edge map, our model learns to synthesize a corresponding image from different viewpoints. To enable explicit 3D user control, we extend conditional generative models with neural radiance fields. Given widely-available posed monocular image and label map pairs, our model learns to assign a label to every 3D point in addition to color and density, which enables it to render the image and pixel-aligned label map simultaneously. Finally, we build an interactive system that allows users to edit the label map from different viewpoints and generate outputs accordingly.

Poster
Anna Frühstück · Nikolaos Sarafianos · Yuanlu Xu · Peter Wonka · Tony Tung

[ West Building Exhibit Halls ABC ]

We introduce VIVE3D, a novel approach that extends the capabilities of image-based 3D GANs to video editing and is able to represent the input video in an identity-preserving and temporally consistent way. We propose two new building blocks. First, we introduce a novel GAN inversion technique specifically tailored to 3D GANs by jointly embedding multiple frames and optimizing for the camera parameters. Second, besides traditional semantic face edits (e.g. for age and expression), we are the first to demonstrate edits that show novel views of the head enabled by the inherent properties of 3D GANs and our optical flow-guided compositing technique to combine the head with the background video. Our experiments demonstrate that VIVE3D generates high-fidelity face edits at consistent quality from a range of camera viewpoints which are composited with the original video in a temporally and spatially-consistent manner.

Poster
Yen-Chi Cheng · Hsin-Ying Lee · Sergey Tulyakov · Alexander G. Schwing · Liang-Yan Gui

[ West Building Exhibit Halls ABC ]

In this work, we present a novel framework built to simplify 3D asset generation for amateur users. To enable interactive generation, our method supports a variety of input modalities that can be easily provided by a human, including images, texts, partially observed shapes and combinations of these, further allowing for adjusting the strength of each input. At the core of our approach is an encoder-decoder, compressing 3D shapes into a compact latent representation, upon which a diffusion model is learned. To enable a variety of multi-modal inputs, we employ task-specific encoders with dropout followed by a cross-attention mechanism. Due to its flexibility, our model naturally supports a variety of tasks outperforming prior works on shape completion, image-based 3D reconstruction, and text-to-3D. Most interestingly, our model can combine all these tasks into one swiss-army-knife tool, enabling the user to perform shape generation using incomplete shapes, images, and textual descriptions at the same time, providing the relative weights for each input and facilitating interactivity. Despite our approach being shape-only, we further show an efficient method to texture the generated using large-scale text-to-image models.

Poster
Konstantinos Tertikas · Despoina Paschalidou · Boxiao Pan · Jeong Joon Park · Mikaela Angelina Uy · Ioannis Emiris · Yannis Avrithis · Leonidas Guibas

[ West Building Exhibit Halls ABC ]

Impressive progress in generative models and implicit representations gave rise to methods that can generate 3D shapes of high quality. However, being able to locally control and edit shapes is another essential property that can unlock several content creation applications. Local control can be achieved with part-aware models, but existing methods require 3D supervision and cannot produce textures. In this work, we devise PartNeRF, a novel part-aware generative model for editable 3D shape synthesis that does not require any explicit 3D supervision. Our model generates objects as a set of locally defined NeRFs, augmented with an affine transformation. This enables several editing operations such as applying transformations on parts, mixing parts from different objects etc. To ensure distinct, manipulable parts we enforce a hard assignment of rays to parts that makes sure that the color of each ray is only determined by a single NeRF. As a result, altering one part does not affect the appearance of the others. Evaluations on various ShapeNet categories demonstrate the ability of our model to generate editable 3D objects of improved fidelity, compared to previous part-based generative approaches that require 3D supervision or models relying on NeRFs.

Poster
Dejia Xu · Yifan Jiang · Peihao Wang · Zhiwen Fan · Yi Wang · Zhangyang Wang

[ West Building Exhibit Halls ABC ]

Virtual reality and augmented reality (XR) bring increasing demand for 3D content generation. However, creating high-quality 3D content requires tedious work from a human expert. In this work, we study the challenging task of lifting a single image to a 3D object and, for the first time, demonstrate the ability to generate a plausible 3D object with 360° views that corresponds well with the given reference image. By conditioning on the reference image, our model can fulfill the everlasting curiosity for synthesizing novel views of objects from images. Our technique sheds light on a promising direction of easing the workflows for 3D artists and XR designers. We propose a novel framework, dubbed NeuralLift-360, that utilizes a depth-aware neural radiance representation (NeRF) and learns to craft the scene guided by denoising diffusion models. By introducing a ranking loss, our NeuralLift-360 can be guided with rough depth estimation in the wild. We also adopt a CLIP-guided sampling strategy for the diffusion prior to provide coherent guidance. Extensive experiments demonstrate that our NeuralLift-360 significantly outperforms existing state-of-the-art baselines. Project page: https://vita-group.github.io/NeuralLift-360/

Poster
Baojin Huang · Zhongyuan Wang · Jifan Yang · Jiaxin Ai · Qin Zou · Qian Wang · Dengpan Ye

[ West Building Exhibit Halls ABC ]

In this paper, we consider the face swapping detection from the perspective of face identity. Face swapping aims to replace the target face with the source face and generate the fake face that the human cannot distinguish between real and fake. We argue that the fake face contains the explicit identity and implicit identity, which respectively corresponds to the identity of the source face and target face during face swapping. Note that the explicit identities of faces can be extracted by regular face recognizers. Particularly, the implicit identity of real face is consistent with the its explicit identity. Thus the difference between explicit and implicit identity of face facilitates face swapping detection. Following this idea, we propose a novel implicit identity driven framework for face swapping detection. Specifically, we design an explicit identity contrast (EIC) loss and an implicit identity exploration (IIE) loss, which supervises a CNN backbone to embed face images into the implicit identity space. Under the guidance of EIC, real samples are pulled closer to their explicit identities, while fake samples are pushed away from their explicit identities. Moreover, IIE is derived from the margin-based classification loss function, which encourages the fake faces with known target identities …

Poster
Rohith Agaram · Shaurya Dewan · Rahul Sajnani · Adrien Poulenard · Madhava Krishna · Srinath Sridhar

[ West Building Exhibit Halls ABC ]

Coordinate-based implicit neural networks, or neural fields, have emerged as useful representations of shape and appearance in 3D computer vision. Despite advances however, it remains challenging to build neural fields for categories of objects without datasets like ShapeNet that provide “canonicalized” object instances that are consistently aligned for their 3D position and orientation (pose). We present Canonical Field Network (CaFi-Net), a self-supervised method to canonicalize the 3D pose of instances from an object category represented as neural fields, specifically neural radiance fields (NeRFs). CaFi-Net directly learns from continuous and noisy radiance fields using a Siamese network architecture that is designed to extract equivariant field features for category-level canonicalization. During inference, our method takes pre-trained neural radiance fields of novel object instances at arbitrary 3D pose, and estimates a canonical field with consistent 3D pose across the entire category. Extensive experiments on a new dataset of 1300 NeRF models across 13 object categories show that our method matches or exceeds the performance of 3D point cloud-based methods.

Poster
Xingyu Ren · Jiankang Deng · Chao Ma · Yichao Yan · Xiaokang Yang

[ West Building Exhibit Halls ABC ]

Recent 3D face reconstruction methods have made significant advances in geometry prediction, yet further cosmetic improvements are limited by lagged albedo because inferring albedo from appearance is an ill-posed problem. Although some existing methods consider prior knowledge from illumination to improve albedo estimation, they still produce a light-skin bias due to racially biased albedo models and limited light constraints. In this paper, we reconsider the relationship between albedo and face attributes and propose an ID2Albedo to directly estimate albedo without constraining illumination. Our key insight is that intrinsic semantic attributes such as race, skin color, and age can constrain the albedo map. We first introduce visual-textual cues and design a semantic loss to supervise facial albedo estimation. Specifically, we pre-define text labels such as race, skin color, age, and wrinkles. Then, we employ the text-image model (CLIP) to compute the similarity between the text and the input image, and assign a pseudo-label to each facial image. We constrain generated albedos in the training phase to have the same attributes as the inputs. In addition, we train a high-quality, unbiased facial albedo generator and utilize the semantic loss to learn the mapping from illumination-robust identity features to the albedo latent codes. …

Poster
Menghua Wu · Hao Zhu · Linjia Huang · Yiyu Zhuang · Yuanxun Lu · Xun Cao

[ West Building Exhibit Halls ABC ]

Synthesizing high-quality 3D face models from natural language descriptions is very valuable for many applications, including avatar creation, virtual reality, and telepresence. However, little research ever tapped into this task. We argue the major obstacle lies in 1) the lack of high-quality 3D face data with descriptive text annotation, and 2) the complex mapping relationship between descriptive language space and shape/appearance space. To solve these problems, we build DESCRIBE3D dataset, the first large-scale dataset with fine-grained text descriptions for text-to-3D face generation task. Then we propose a two-stage framework to first generate a 3D face that matches the concrete descriptions, then optimize the parameters in the 3D shape and texture space with abstract description to refine the 3D face model. Extensive experimental results show that our method can produce a faithful 3D face that conforms to the input descriptions with higher accuracy and quality than previous methods. The code and DESCRIBE3D dataset are released at https://github.com/zhuhao-nju/describe3d.

Poster
Heyuan Li · Bo Wang · Yu Cheng · Mohan Kankanhalli · Robby T. Tan

[ West Building Exhibit Halls ABC ]

Sensitivity to severe occlusion and large view angles limits the usage scenarios of the existing monocular 3D dense face alignment methods. The state-of-the-art 3DMM-based method, directly regresses the model’s coefficients, underutilizing the low-level 2D spatial and semantic information, which can actually offer cues for face shape and orientation. In this work, we demonstrate how modeling 3D facial geometry in image and model space jointly can solve the occlusion and view angle problems. Instead of predicting the whole face directly, we regress image space features in the visible facial region by dense prediction first. Subsequently, we predict our model’s coefficients based on the regressed feature of the visible regions, leveraging the prior knowledge of whole face geometry from the morphable models to complete the invisible regions. We further propose a fusion network that combines the advantages of both the image and model space predictions to achieve high robustness and accuracy in unconstrained scenarios. Thanks to the proposed fusion module, our method is robust not only to occlusion and large pitch and roll view angles, which is the benefit of our image space approach, but also to noise and large yaw angles, which is the benefit of our model space method. Comprehensive …

Poster
Yunpeng Bai · Yanbo Fan · Xuan Wang · Yong Zhang · Jingxiang Sun · Chun Yuan · Ying Shan

[ West Building Exhibit Halls ABC ]

High-fidelity facial avatar reconstruction from a monocular video is a significant research problem in computer graphics and computer vision. Recently, Neural Radiance Field (NeRF) has shown impressive novel view rendering results and has been considered for facial avatar reconstruction. However, the complex facial dynamics and missing 3D information in monocular videos raise significant challenges for faithful facial reconstruction. In this work, we propose a new method for NeRF-based facial avatar reconstruction that utilizes 3D-aware generative prior. Different from existing works that depend on a conditional deformation field for dynamic modeling, we propose to learn a personalized generative prior, which is formulated as a local and low dimensional subspace in the latent space of 3D-GAN. We propose an efficient method to construct the personalized generative prior based on a small set of facial images of a given individual. After learning, it allows for photo-realistic rendering with novel views, and the face reenactment can be realized by performing navigation in the latent space. Our proposed method is applicable for different driven signals, including RGB images, 3DMM coefficients, and audio. Compared with existing works, we obtain superior novel view synthesis results and faithfully face reenactment performance. The code is available here https://github.com/bbaaii/HFA-GP.

Poster
Rameen Abdal · Hsin-Ying Lee · Peihao Zhu · Menglei Chai · Aliaksandr Siarohin · Peter Wonka · Sergey Tulyakov

[ West Building Exhibit Halls ABC ]

Modern 3D-GANs synthesize geometry and texture by training on large-scale datasets with a consistent structure. Training such models on stylized, artistic data, with often unknown, highly variable geometry, and camera information has not yet been shown possible. Can we train a 3D GAN on such artistic data, while maintaining multi-view consistency and texture quality? To this end, we propose an adaptation framework, where the source domain is a pre-trained 3D-GAN, while the target domain is a 2D-GAN trained on artistic datasets. We, then, distill the knowledge from a 2D generator to the source 3D generator. To do that, we first propose an optimization-based method to align the distributions of camera parameters across domains. Second, we propose regularizations necessary to learn high-quality texture, while avoiding degenerate geometric solutions, such as flat shapes. Third, we show a deformation-based technique for modeling exaggerated geometry of artistic domains, enabling---as a byproduct---personalized geometric editing. Finally, we propose a novel inversion method for 3D-GANs linking the latent spaces of the source and the target domains. Our contributions---for the first time---allow for the generation, editing, and animation of personalized artistic 3D avatars on artistic datasets.

Poster
Tengfei Wang · Bo Zhang · Ting Zhang · Shuyang Gu · Jianmin Bao · Tadas Baltrusaitis · Jingjing Shen · Dong Chen · Fang Wen · Qifeng Chen · Baining Guo

[ West Building Exhibit Halls ABC ]

This paper presents a 3D diffusion model that automatically generates 3D digital avatars represented as neural radiance fields (NeRFs). A significant challenge for 3D diffusion is that the memory and processing costs are prohibitive for producing high-quality results with rich details. To tackle this problem, we propose the roll-out diffusion network (RODIN), which takes a 3D NeRF model represented as multiple 2D feature maps and rolls out them onto a single 2D feature plane within which we perform 3D-aware diffusion. The RODIN model brings much-needed computational efficiency while preserving the integrity of 3D diffusion by using 3D-aware convolution that attends to projected features in the 2D plane according to their original relationships in 3D. We also use latent conditioning to orchestrate the feature generation with global coherence, leading to high-fidelity avatars and enabling semantic editing based on text prompts. Finally, we use hierarchical synthesis to further enhance details. The 3D avatars generated by our model compare favorably with those produced by existing techniques. We can generate highly detailed avatars with realistic hairstyles and facial hair. We also demonstrate 3D avatar generation from image or text, as well as text-guided editability.

Poster
Wojciech Zielonka · Timo Bolkart · Justus Thies

[ West Building Exhibit Halls ABC ]

We present Instant Volumetric Head Avatars (INSTA), a novel approach for reconstructing photo-realistic digital avatars instantaneously. INSTA models a dynamic neural radiance field based on neural graphics primitives embedded around a parametric face model. Our pipeline is trained on a single monocular RGB portrait video that observes the subject under different expressions and views. While state-of-the-art methods take up to several days to train an avatar, our method can reconstruct a digital avatar in less than 10 minutes on modern GPU hardware, which is orders of magnitude faster than previous solutions. In addition, it allows for the interactive rendering of novel poses and expressions. By leveraging the geometry prior of the underlying parametric face model, we demonstrate that INSTA extrapolates to unseen poses. In quantitative and qualitative studies on various subjects, INSTA outperforms state-of-the-art methods regarding rendering quality and training time. Project website: https://zielon.github.io/insta/

Poster
Siddarth Ravichandran · Ondřej Texler · Dimitar Dinev · Hyun Jae Kang

[ West Building Exhibit Halls ABC ]

Over the last few decades, many aspects of human life have been enhanced with virtual domains, from the advent of digital assistants such as Amazon’s Alexa and Apple’s Siri to the latest metaverse efforts of the rebranded Meta. These trends underscore the importance of generating photorealistic visual depictions of humans. This has led to the rapid growth of so-called deepfake and talking-head generation methods in recent years. Despite their impressive results and popularity, they usually lack certain qualitative aspects such as texture quality, lips synchronization, or resolution, and practical aspects such as the ability to run in real-time. To allow for virtual human avatars to be used in practical scenarios, we propose an end-to-end framework for synthesizing high-quality virtual human faces capable of speaking with accurate lip motion with a special emphasis on performance. We introduce a novel network utilizing visemes as an intermediate audio representation and a novel data augmentation strategy employing a hierarchical image synthesis approach that allows disentanglement of the different modalities used to control the global head motion. Our method runs in real-time, and is able to deliver superior results compared to the current state-of-the-art.

Poster
Xingyi Li · Zhiguo Cao · Huiqiang Sun · Jianming Zhang · Ke Xian · Guosheng Lin

[ West Building Exhibit Halls ABC ]

We present 3D Cinemagraphy, a new technique that marries 2D image animation with 3D photography. Given a single still image as input, our goal is to generate a video that contains both visual content animation and camera motion. We empirically find that naively combining existing 2D image animation and 3D photography methods leads to obvious artifacts or inconsistent animation. Our key insight is that representing and animating the scene in 3D space offers a natural solution to this task. To this end, we first convert the input image into feature-based layered depth images using predicted depth values, followed by unprojecting them to a feature point cloud. To animate the scene, we perform motion estimation and lift the 2D motion into the 3D scene flow. Finally, to resolve the problem of hole emergence as points move forward, we propose to bidirectionally displace the point cloud as per the scene flow and synthesize novel views by separately projecting them into target image planes and blending the results. Extensive experiments demonstrate the effectiveness of our method. A user study is also conducted to validate the compelling rendering results of our method.

Poster
Luyang Zhu · Dawei Yang · Tyler Zhu · Fitsum Reda · William Chan · Chitwan Saharia · Mohammad Norouzi · Ira Kemelmacher-Shlizerman

[ West Building Exhibit Halls ABC ]

Given two images depicting a person and a garment worn by another person, our goal is to generate a visualization of how the garment might look on the input person. A key challenge is to synthesize a photorealistic detail-preserving visualization of the garment, while warping the garment to accommodate a significant body pose and shape change across the subjects. Previous methods either focus on garment detail preservation without effective pose and shape variation, or allow try-on with the desired shape and pose but lack garment details. In this paper, we propose a diffusion-based architecture that unifies two UNets (referred to as Parallel-UNet), which allows us to preserve garment details and warp the garment for significant pose and body change in a single network. The key ideas behind Parallel-UNet include: 1) garment is warped implicitly via a cross attention mechanism, 2) garment warp and person blend happen as part of a unified process as opposed to a sequence of two separate tasks. Experimental results indicate that TryOnDiffusion achieves state-of-the-art performance both qualitatively and quantitatively.

Poster
Xingqun Qi · Chen Liu · Muyi Sun · Lincheng Li · Changjie Fan · Xin Yu

[ West Building Exhibit Halls ABC ]

Predicting natural and diverse 3D hand gestures from the upper body dynamics is a practical yet challenging task in virtual avatar creation. Previous works usually overlook the asymmetric motions between two hands and generate two hands in a holistic manner, leading to unnatural results. In this work, we introduce a novel bilateral hand disentanglement based two-stage 3D hand generation method to achieve natural and diverse 3D hand prediction from body dynamics. In the first stage, we intend to generate natural hand gestures by two hand-disentanglement branches. Considering the asymmetric gestures and motions of two hands, we introduce a Spatial-Residual Memory (SRM) module to model spatial interaction between the body and each hand by residual learning. To enhance the coordination of two hand motions wrt. body dynamics holistically, we then present a Temporal-Motion Memory (TMM) module. TMM can effectively model the temporal association between body dynamics and two hand motions. The second stage is built upon the insight that 3D hand predictions should be non-deterministic given the sequential body postures. Thus, we further diversify our 3D hand predictions based on the initial output from the stage one. Concretely, we propose a Prototypical-Memory Sampling Strategy (PSS) to generate the non-deterministic hand gestures …

Poster
Yasamin Jafarian · Tuanfeng Y. Wang · Duygu Ceylan · Jimei Yang · Nathan Carr · Yi Zhou · Hyun Soo Park

[ West Building Exhibit Halls ABC ]

Clothes undergo complex geometric deformations, which lead to appearance changes. To edit human videos in a physically plausible way, a texture map must take into account not only the garment transformation induced by the body movements and clothes fitting, but also its 3D fine-grained surface geometry. This poses, however, a new challenge of 3D reconstruction of dynamic clothes from an image or a video. In this paper, we show that it is possible to edit dressed human images and videos without 3D reconstruction. We estimate a geometry aware texture map between the garment region in an image and the texture space, a.k.a, UV map. Our UV map is designed to preserve isometry with respect to the underlying 3D surface by making use of the 3D surface normals predicted from the image. Our approach captures the underlying geometry of the garment in a self-supervised way, requiring no ground truth annotation of UV maps and can be readily extended to predict temporally coherent UV maps. We demonstrate that our method outperforms the state-of-the-art human UV map estimation approaches on both real and synthetic data.

Poster
Lingteng Qiu · Guanying Chen · Jiapeng Zhou · Mutian Xu · Junle Wang · Xiaoguang Han

[ West Building Exhibit Halls ABC ]

Reconstructing dynamic 3D garment surfaces with open boundaries from monocular videos is an important problem as it provides a practical and low-cost solution for clothes digitization. Recent neural rendering methods achieve high-quality dynamic clothed human reconstruction results from monocular video, but these methods cannot separate the garment surface from the body. Moreover, despite existing garment reconstruction methods based on feature curve representation demonstrating impressive results for garment reconstruction from a single image, they struggle to generate temporally consistent surfaces for the video input. To address the above limitations, in this paper, we formulate this task as an optimization problem of 3D garment feature curves and surface reconstruction from monocular video. We introduce a novel approach, called REC-MV to jointly optimize the explicit feature curves and the implicit signed distance field (SDF) of the garments. Then the open garment meshes can be extracted via garment template registration in the canonical space. Experiments on multiple casually captured datasets show that our approach outperforms existing methods and can produce high-quality dynamic garment surfaces.

Poster
Yukang Cao · Kai Han · Kwan-Yee K. Wong

[ West Building Exhibit Halls ABC ]

We address the problem of clothed human reconstruction from a single image or uncalibrated multi-view images. Existing methods struggle with reconstructing detailed geometry of a clothed human and often require a calibrated setting for multi-view reconstruction. We propose a flexible framework which, by leveraging the parametric SMPL-X model, can take an arbitrary number of input images to reconstruct a clothed human model under an uncalibrated setting. At the core of our framework is our novel self-evolved signed distance field (SeSDF) module which allows the framework to learn to deform the signed distance field (SDF) derived from the fitted SMPL-X model, such that detailed geometry reflecting the actual clothed human can be encoded for better reconstruction. Besides, we propose a simple method for self-calibration of multi-view images via the fitted SMPL-X parameters. This lifts the requirement of tedious manual calibration and largely increases the flexibility of our method. Further, we introduce an effective occlusion-aware feature fusion strategy to account for the most useful features to reconstruct the human model. We thoroughly evaluate our framework on public benchmarks, demonstrating significant superiority over the state-of-the-arts both qualitatively and quantitatively.

Poster
Aliaksandr Siarohin · Willi Menapace · Ivan Skorokhodov · Kyle Olszewski · Jian Ren · Hsin-Ying Lee · Menglei Chai · Sergey Tulyakov

[ West Building Exhibit Halls ABC ]

We propose a novel approach for unsupervised 3D animation of non-rigid deformable objects. Our method learns the 3D structure and dynamics of objects solely from single-view RGB videos, and can decompose them into semantically meaningful parts that can be tracked and animated. Using a 3D autodecoder framework, paired with a keypoint estimator via a differentiable PnP algorithm, our model learns the underlying object geometry and parts decomposition in an entirely unsupervised manner. This allows it to perform 3D segmentation, 3D keypoint estimation, novel view synthesis, and animation. We primarily evaluate the framework on two video datasets: VoxCeleb 256^2 and TEDXPeople 256^2. In addition, on the Cats 256^2 dataset, we show that it learns compelling 3D geometry even from raw image data. Finally, we show that our model can obtain animatable 3D objects from a singe or a few images.

Poster
Rolandos Alexandros Potamias · Stylianos Ploumpis · Stylianos Moschoglou · Vasileios Triantafyllou · Stefanos Zafeiriou

[ West Building Exhibit Halls ABC ]

Over the last few years, with the advent of virtual and augmented reality, an enormous amount of research has been focused on modeling, tracking and reconstructing human hands. Given their power to express human behavior, hands have been a very important, but challenging component of the human body. Currently, most of the state-of-the-art reconstruction and pose estimation methods rely on the low polygon MANO model. Apart from its low polygon count, MANO model was trained with only 31 adult subjects, which not only limits its expressive power but also imposes unnecessary shape reconstruction constraints on pose estimation methods. Moreover, hand appearance remains almost unexplored and neglected from the majority of hand reconstruction methods. In this work, we propose “Handy”, a large-scale model of the human hand, modeling both shape and appearance composed of over 1200 subjects which we make publicly available for the benefit of the research community. In contrast to current models, our proposed hand model was trained on a dataset with large diversity in age, gender, and ethnicity, which tackles the limitations of MANO and accurately reconstructs out-of-distribution samples. In order to create a high quality texture model, we trained a powerful GAN, which preserves high frequency details …

Poster
Nikolas Lamb · Cameron Palmer · Benjamin Molloy · Sean Banerjee · Natasha Kholgade Banerjee

[ West Building Exhibit Halls ABC ]

Automated shape repair approaches currently lack access to datasets that describe real-world damaged geometry. We present Fantastic Breaks (and Where to Find Them: https://terascale-all-sensing-research-studio.github.io/FantasticBreaks), a dataset containing scanned, waterproofed, and cleaned 3D meshes for 150 broken objects, paired and geometrically aligned with complete counterparts. Fantastic Breaks contains class and material labels, proxy repair parts that join to broken meshes to generate complete meshes, and manually annotated fracture boundaries. Through a detailed analysis of fracture geometry, we reveal differences between Fantastic Breaks and synthetic fracture datasets generated using geometric and physics-based methods. We show experimental shape repair evaluation with Fantastic Breaks using multiple learning-based approaches pre-trained with synthetic datasets and re-trained with subset of Fantastic Breaks.

Poster
Jeff Tan · Gengshan Yang · Deva Ramanan

[ West Building Exhibit Halls ABC ]

We present a method for reconstructing articulated 3D models from videos in real-time, without test-time optimization or manual 3D supervision at training time. Prior work often relies on pre-built deformable models (e.g. SMAL/SMPL), or slow per-scene optimization through differentiable rendering (e.g. dynamic NeRFs). Such methods fail to support arbitrary object categories, or are unsuitable for real-time applications. To address the challenge of collecting large-scale 3D training data for arbitrary deformable object categories, our key insight is to use off-the-shelf video-based dynamic NeRFs as 3D supervision to train a fast feed-forward network, turning 3D shape and motion prediction into a supervised distillation task. Our temporal-aware network uses articulated bones and blend skinning to represent arbitrary deformations, and is self-supervised on video datasets without requiring 3D shapes or viewpoints as input. Through distillation, our network learns to 3D-reconstruct unseen articulated objects at interactive frame rates. Our method yields higher-fidelity 3D reconstructions than prior real-time methods for animals, with the ability to render realistic images at novel viewpoints and poses.

Poster
Rui Guo · Jasmine Collins · Oscar de Lima · Andrew Owens

[ West Building Exhibit Halls ABC ]

We propose a method that learns to camouflage 3D objects within scenes. Given an object’s shape and a distribution of viewpoints from which it will be seen, we estimate a texture that will make it difficult to detect. Successfully solving this task requires a model that can accurately reproduce textures from the scene, while simultaneously dealing with the highly conflicting constraints imposed by each viewpoint. We address these challenges with a model based on texture fields and adversarial learning. Our model learns to camouflage a variety of object shapes from randomly sampled locations and viewpoints within the input scene, and is the first to address the problem of hiding complex object shapes. Using a human visual search study, we find that our estimated textures conceal objects significantly better than previous methods.

Poster
Shashank Tripathi · Lea Müller · Chun-Hao P. Huang · Omid Taheri · Michael J. Black · Dimitrios Tzionas

[ West Building Exhibit Halls ABC ]

Estimating 3D humans from images often produces implausible bodies that lean, float, or penetrate the floor. Such methods ignore the fact that bodies are typically supported by the scene. A physics engine can be used to enforce physical plausibility, but these are not differentiable, rely on unrealistic proxy bodies, and are difficult to integrate into existing optimization and learning frameworks. In contrast, we exploit novel intuitive-physics (IP) terms that can be inferred from a 3D SMPL body interacting with the scene. Inspired by biomechanics, we infer the pressure heatmap on the body, the Center of Pressure (CoP) from the heatmap, and the SMPL body’s Center of Mass (CoM). With these, we develop IPMAN, to estimate a 3D body from a color image in a “stable” configuration by encouraging plausible floor contact and overlapping CoP and CoM. Our IP terms are intuitive, easy to implement, fast to compute, differentiable, and can be integrated into existing optimization and regression methods. We evaluate IPMAN on standard datasets and MoYo, a new dataset with synchronized multi-view images, ground-truth 3D bodies with complex poses, body-floor contact, CoM and pressure. IPMAN produces more plausible results than the state of the art, improving accuracy for static poses, …

Poster
Ilya A. Petrov · Riccardo Marin · Julian Chibane · Gerard Pons-Moll

[ West Building Exhibit Halls ABC ]

The intimate entanglement between objects affordances and human poses is of large interest, among others, for behavioural sciences, cognitive psychology, and Computer Vision communities. In recent years, the latter has developed several object-centric approaches: starting from items, learning pipelines synthesizing human poses and dynamics in a realistic way, satisfying both geometrical and functional expectations. However, the inverse perspective is significantly less explored: Can we infer 3D objects and their poses from human interactions alone? Our investigation follows this direction, showing that a generic 3D human point cloud is enough to pop up an unobserved object, even when the user is just imitating a functionality (e.g., looking through a binocular) without involving a tangible counterpart. We validate our method qualitatively and quantitatively, with synthetic data and sequences acquired for the task, showing applicability for XR/VR.

Poster
Yinzhen Xu · Weikang Wan · Jialiang Zhang · Haoran Liu · Zikang Shan · Hao Shen · Ruicheng Wang · Haoran Geng · Yijia Weng · Jiayi Chen · Tengyu Liu · Li Yi · He Wang

[ West Building Exhibit Halls ABC ]

In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud. For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve …

Poster
Xiongbiao Luo

[ West Building Exhibit Halls ABC ]

Stochastic filtering is widely used to deal with nonlinear optimization problems such as 3-D and visual tracking in various computer vision and augmented reality applications. Many current methods suffer from an imbalance between exploration and exploitation due to their particle degeneracy and impoverishment, resulting in local optimums. To address this imbalance, this work proposes a new constrained evolutionary diffusion filter for nonlinear optimization. Specifically, this filter develops spatial state constraints and adaptive history-recall differential evolution embedded evolutionary stochastic diffusion instead of sequential resampling to resolve the degeneracy and impoverishment problem. With application to monocular endoscope 3-D tracking, the experimental results show that the proposed filtering significantly improves the balance between exploration and exploitation and certainly works better than recent 3-D tracking methods. Particularly, the surgical tracking error was reduced from 4.03 mm to 2.59 mm.

Poster
Xianghui Xie · Bharat Lal Bhatnagar · Gerard Pons-Moll

[ West Building Exhibit Halls ABC ]

Capturing the interactions between humans and their environment in 3D is important for many applications in robotics, graphics, and vision. Recent works to reconstruct the 3D human and object from a single RGB image do not have consistent relative translation across frames because they assume a fixed depth. Moreover, their performance drops significantly when the object is occluded. In this work, we propose a novel method to track the 3D human, object, contacts, and relative translation across frames from a single RGB camera, while being robust to heavy occlusions. Our method is built on two key insights. First, we condition our neural field reconstructions for human and object on per-frame SMPL model estimates obtained by pre-fitting SMPL to a video sequence. This improves neural reconstruction accuracy and produces coherent relative translation across frames. Second, human and object motion from visible frames provides valuable information to infer the occluded object. We propose a novel transformer-based neural network that explicitly uses object visibility and human motion to leverage neighboring frames to make predictions for the occluded frames. Building on these insights, our method is able to track both human and object robustly even under occlusions. Experiments on two datasets show that our …

Poster
Hoseong Cho · Chanwoo Kim · Jihyeon Kim · Seongyeong Lee · Elkhan Ismayilzada · Seungryul Baek

[ West Building Exhibit Halls ABC ]

Understanding the hand-object interactions from an egocentric video has received a great attention recently. So far, most approaches are based on the convolutional neural network (CNN) features combined with the temporal encoding via the long short-term memory (LSTM) or graph convolution network (GCN) to provide the unified understanding of two hands, an object and their interactions. In this paper, we propose the Transformer-based unified framework that provides better understanding of two hands manipulating objects. In our framework, we insert the whole image depicting two hands, an object and their interactions as input and jointly estimate 3 information from each frame: poses of two hands, pose of an object and object types. Afterwards, the action class defined by the hand-object interactions is predicted from the entire video based on the estimated information combined with the contact map that encodes the interaction between two hands and an object. Experiments are conducted on H2O and FPHA benchmark datasets and we demonstrated the superiority of our method achieving the state-of-the-art accuracy. Ablative studies further demonstrate the effectiveness of each proposed module.

Poster
Akash Sengupta · Ignas Budvytis · Roberto Cipolla

[ West Building Exhibit Halls ABC ]

Monocular 3D human pose and shape estimation is an ill-posed problem since multiple 3D solutions can explain a 2D image of a subject. Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image. We show that these approaches exhibit a trade-off between three key properties: (i) accuracy - the likelihood of the ground-truth 3D solution under the predicted distribution, (ii) sample-input consistency - the extent to which 3D samples from the predicted distribution match the visible 2D image evidence, and (iii) sample diversity - the range of plausible 3D solutions modelled by the predicted distribution. Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions. We use the human kinematic tree to factorise full body pose into ancestor-conditioned per-body-part pose distributions in an autoregressive manner. Per-body-part distributions are implemented using normalising flows that respect the manifold structure of SO(3), the Lie group of per-body-part poses. We show that ill-posed, but ubiquitous, 3D point estimate losses reduce sample diversity, and employ only probabilistic training losses. HuManiFlow outperforms state-of-the-art probabilistic approaches on the 3DPW and SSP-3D datasets.

Poster
Zhenhua Tang · Zhaofan Qiu · Yanbin Hao · Richang Hong · Ting Yao

[ West Building Exhibit Halls ABC ]

Recent transformer-based solutions have shown great success in 3D human pose estimation. Nevertheless, to calculate the joint-to-joint affinity matrix, the computational cost has a quadratic growth with the increasing number of joints. Such drawback becomes even worse especially for pose estimation in a video sequence, which necessitates spatio-temporal correlation spanning over the entire video. In this paper, we facilitate the issue by decomposing correlation learning into space and time, and present a novel Spatio-Temporal Criss-cross attention (STC) block. Technically, STC first slices its input feature into two partitions evenly along the channel dimension, followed by performing spatial and temporal attention respectively on each partition. STC then models the interactions between joints in an identical frame and joints in an identical trajectory simultaneously by concatenating the outputs from attention layers. On this basis, we devise STCFormer by stacking multiple STC blocks and further integrate a new Structure-enhanced Positional Embedding (SPE) into STCFormer to take the structure of human body into consideration. The embedding function consists of two components: spatio-temporal convolution around neighboring joints to capture local structure, and part-aware embedding to indicate which part each joint belongs to. Extensive experiments are conducted on Human3.6M and MPI-INF-3DHP benchmarks, and superior results are …

Poster
Hai Ci · Mingdong Wu · Wentao Zhu · Xiaoxuan Ma · Hao Dong · Fangwei Zhong · Yizhou Wang

[ West Building Exhibit Halls ABC ]

Learning 3D human pose prior is essential to human-centered AI. Here, we present GFPose, a versatile framework to model plausible 3D human poses for various applications. At the core of GFPose is a time-dependent score network, which estimates the gradient on each body joint and progressively denoises the perturbed 3D human pose to match a given task specification. During the denoising process, GFPose implicitly incorporates pose priors in gradients and unifies various discriminative and generative tasks in an elegant framework. Despite the simplicity, GFPose demonstrates great potential in several downstream tasks. Our experiments empirically show that 1) as a multi-hypothesis pose estimator, GFPose outperforms existing SOTAs by 20% on Human3.6M dataset. 2) as a single-hypothesis pose estimator, GFPose achieves comparable results to deterministic SOTAs, even with a vanilla backbone. 3) GFPose is able to produce diverse and realistic samples in pose denoising, completion and generation tasks.

Poster
Edward Vendrow · Duy Tho Le · Jianfei Cai · Hamid Rezatofighi

[ West Building Exhibit Halls ABC ]

Autonomous robotic systems operating in human environments must understand their surroundings to make accurate and safe decisions. In crowded human scenes with close-up human-robot interaction and robot navigation, a deep understanding of surrounding people requires reasoning about human motion and body dynamics over time with human body pose estimation and tracking. However, existing datasets captured from robot platforms either do not provide pose annotations or do not reflect the scene distribution of social robots. In this paper, we introduce JRDB-Pose, a large-scale dataset and benchmark for multi-person pose estimation and tracking. JRDB-Pose extends the existing JRDB which includes videos captured from a social navigation robot in a university campus environment, containing challenging scenes with crowded indoor and outdoor locations and a diverse range of scales and occlusion types. JRDB-Pose provides human pose annotations with per-keypoint occlusion labels and track IDs consistent across the scene and with existing annotations in JRDB. We conduct a thorough experimental study of state-of-the-art multi-person pose estimation and tracking methods on JRDB-Pose, showing that our dataset imposes new challenges for the existing methods. JRDB-Pose is available at https://jrdb.erc.monash.edu/.

Poster
Qiyuan He · Linlin Yang · Kerui Gu · Qiuxia Lin · Angela Yao

[ West Building Exhibit Halls ABC ]

We present Pose Integrated Gradient (PoseIG), the first interpretability technique designed for pose estimation. We extend the concept of integrated gradients for pose estimation to generate pixel-level attribution maps. To enable comparison across different pose frameworks, we unify different pose outputs into a common output space, along with a likelihood approximation function for gradient back-propagation. To complement the qualitative insight from the attribution maps, we propose three indices for quantitative analysis. With these tools, we systematically compare different pose estimation frameworks to understand the impacts of network design, backbone and auxiliary tasks. Our analysis reveals an interesting shortcut of the knuckles (MCP joints) for hand pose estimation and an under-explored inversion error for keypoints in body pose estimation. Project page: https://qy-h00.github.io/poseig/.

Poster
Yang Hai · Rui Song · Jiaojiao Li · Yinlin Hu

[ West Building Exhibit Halls ABC ]

Most recent 6D object pose estimation methods rely on 2D optical flow networks to refine their results. However, these optical flow methods typically do not consider any 3D shape information of the targets during matching, making them suffer in 6D object pose estimation. In this work, we propose a shape-constraint recurrent flow network for 6D object pose estimation, which embeds the 3D shape information of the targets into the matching procedure. We first introduce a flow-to-pose component to learn an intermediate pose from the current flow estimation, then impose a shape constraint from the current pose on the lookup space of the 4D correlation volume for flow estimation, which reduces the matching space significantly and is much easier to learn. Finally, we optimize the flow and pose simultaneously in a recurrent manner until convergence. We evaluate our method on three challenging 6D object pose datasets and show that it outperforms the state of the art in both accuracy and efficiency.

Poster
Hanzhi Chen · Fabian Manhardt · Nassir Navab · Benjamin Busam

[ West Building Exhibit Halls ABC ]

In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance.

Poster
Chun-Han Yao · Wei-Chih Hung · Yuanzhen Li · Michael Rubinstein · Ming-Hsuan Yang · Varun Jampani

[ West Building Exhibit Halls ABC ]

Automatically estimating 3D skeleton, shape, camera viewpoints, and part articulation from sparse in-the-wild image ensembles is a severely under-constrained and challenging problem. Most prior methods rely on large-scale image datasets, dense temporal correspondence, or human annotations like camera pose, 2D keypoints, and shape templates. We propose Hi-LASSIE, which performs 3D articulated reconstruction from only 20-30 online images in the wild without any user-defined shape or skeleton templates. We follow the recent work of LASSIE that tackles a similar problem setting and make two significant advances. First, instead of relying on a manually annotated 3D skeleton, we automatically estimate a class-specific skeleton from the selected reference image. Second, we improve the shape reconstructions with novel instance-specific optimization strategies that allow reconstructions to faithful fit on each instance while preserving the class-specific priors learned across all images. Experiments on in-the-wild image ensembles show that Hi-LASSIE obtains higher fidelity state-of-the-art 3D reconstructions despite requiring minimum user input. Project page: chhankyao.github.io/hi-lassie/

Poster
Bangyan Liao · Delin Qu · Yifei Xue · Huiqing Zhang · Yizhen Lao

[ West Building Exhibit Halls ABC ]

We propose a robust and fast bundle adjustment solution that estimates the 6-DoF pose of the camera and the geometry of the environment based on measurements from a rolling shutter (RS) camera. This tackles the challenges in the existing works, namely relying on additional sensors, high frame rate video as input, restrictive assumptions on camera motion, readout direction, and poor efficiency. To this end, we first investigate the influence of normalization to the image point on RSBA performance and show its better approximation in modelling the real 6-DoF camera motion. Then we present a novel analytical model for the visual residual covariance, which can be used to standardize the reprojection error during the optimization, consequently improving the overall accuracy. More importantly, the combination of normalization and covariance standardization weighting in RSBA (NW-RSBA) can avoid common planar degeneracy without needing to constrain the filming manner. Besides, we propose an acceleration strategy for NW-RSBA based on the sparsity of its Jacobian matrix and Schur complement. The extensive synthetic and real data experiments verify the effectiveness and efficiency of the proposed solution over the state-of-the-art works. We also demonstrate the proposed method can be easily implemented and plug-in famous GSSfM and GSSLAM systems …

Poster
Yaqing Ding · Jian Yang · Viktor Larsson · Carl Olsson · Kalle Åström

[ West Building Exhibit Halls ABC ]

One of the classical multi-view geometry problems is the so called P3P problem, where the absolute pose of a calibrated camera is determined from three 2D-to-3D correspondences. Since these solvers form a critical component of many vision systems (e.g.~in localization and Structure-from-Motion), there have been significant effort in developing faster and more stable algorithms. While the current state-of-the-art solvers are both extremely fast and stable, there still exist configurations where they break down. In this paper we algebraically formulate the problem as finding the intersection of two conics. With this formulation we are able to analytically characterize the real roots of the polynomial system and employ a tailored solution strategy for each problem instance. The result is a fast and completely stable solver, that is able to correctly solve cases where competing methods fail. Our experimental evaluation shows that we outperform the current state-of-the-art methods both in terms of speed and success rate.

Poster
Samarth Sinha · Roman Shapovalov · Jeremy Reizenstein · Ignacio Rocco · Natalia Neverova · Andrea Vedaldi · David Novotny

[ West Building Exhibit Halls ABC ]

Obtaining photorealistic reconstructions of objects from sparse views is inherently ambiguous and can only be achieved by learning suitable reconstruction priors. Earlier works on sparse rigid object reconstruction successfully learned such priors from large datasets such as CO3D. In this paper, we extend this approach to dynamic objects. We use cats and dogs as a representative example and introduce Common Pets in 3D (CoP3D), a collection of crowd-sourced videos showing around 4,200 distinct pets. CoP3D is one of the first large-scale datasets for benchmarking non-rigid 3D reconstruction “in the wild”. We also propose Tracker-NeRF, a method for learning 4D reconstruction from our dataset. At test time, given a small number of video frames of an unseen sequence, Tracker-NeRF predicts the trajectories and dynamics of the 3D points and generates new views, interpolating viewpoint and time. Results on CoP3D reveal significantly better non-rigid new-view synthesis performance than existing baselines. The data is available on the project webpage: https://cop3d.github.io/.

Poster
Kejie Li · Jia-Wang Bian · Robert Castle · Philip H.S. Torr · Victor Adrian Prisacariu

[ West Building Exhibit Halls ABC ]

High-quality 3D ground-truth shapes are critical for 3D object reconstruction evaluation. However, it is difficult to create a replica of an object in reality, and even 3D reconstructions generated by 3D scanners have artefacts that cause biases in evaluation. To address this issue, we introduce a novel multi-view RGBD dataset captured using a mobile device, which includes highly precise 3D ground-truth annotations for 153 object models featuring a diverse set of 3D structures. We obtain precise 3D ground-truth shape without relying on high-end 3D scanners by utilising LEGO models with known geometry as the 3D structures for image capture. The distinct data modality offered by high- resolution RGB images and low-resolution depth maps captured on a mobile device, when combined with precise 3D geometry annotations, presents a unique opportunity for future research on high-fidelity 3D reconstruction. Furthermore, we evaluate a range of 3D reconstruction algorithms on the proposed dataset.

Poster
Jiahui Lei · Congyue Deng · Karl Schmeckpeper · Leonidas Guibas · Kostas Daniilidis

[ West Building Exhibit Halls ABC ]

We introduce Equivariant Neural Field Expectation Maximization (EFEM), a simple, effective, and robust geometric algorithm that can segment objects in 3D scenes without annotations or training on scenes. We achieve such unsupervised segmentation by exploiting single object shape priors. We make two novel steps in that direction. First, we introduce equivariant shape representations to this problem to eliminate the complexity induced by the variation in object configuration. Second, we propose a novel EM algorithm that can iteratively refine segmentation masks using the equivariant shape prior. We collect a novel real dataset Chairs and Mugs that contains various object configurations and novel scenes in order to verify the effectiveness and robustness of our method. Experimental results demonstrate that our method achieves consistent and robust performance across different scenes where the (weakly) supervised methods may fail. Code and data available at https://www.cis.upenn.edu/~leijh/projects/efem

Poster
Bokui Shen · Xinchen Yan · Charles R. Qi · Mahyar Najibi · Boyang Deng · Leonidas Guibas · Yin Zhou · Dragomir Anguelov

[ West Building Exhibit Halls ABC ]

Modeling the 3D world from sensor data for simulation is a scalable way of developing testing and validation environments for robotic learning problems such as autonomous driving. However, manually creating or re-creating real-world-like environments is difficult, expensive, and not scalable. Recent generative model techniques have shown promising progress to address such challenges by learning 3D assets using only plentiful 2D images -- but still suffer limitations as they leverage either human-curated image datasets or renderings from manually-created synthetic 3D environments. In this paper, we introduce GINA-3D, a generative model that uses real-world driving data from camera and LiDAR sensors to create photo-realistic 3D implicit neural assets of diverse vehicles and pedestrians. Compared to the existing image datasets, the real-world driving setting poses new challenges due to occlusions, lighting-variations and long-tail distributions. GINA-3D tackles these challenges by decoupling representation learning and generative modeling into two stages with a learned tri-plane latent structure, inspired by recent advances in generative modeling of images. To evaluate our approach, we construct a large-scale object-centric dataset containing over 520K images of vehicles and pedestrians from the Waymo Open Dataset, and a new set of 80K images of long-tail instances such as construction equipment, garbage trucks, and …

Poster
Karmesh Yadav · Ram Ramrakhya · Santhosh Kumar Ramakrishnan · Theo Gervet · John Turner · Aaron Gokaslan · Noah Maestre · Angel Xuan Chang · Dhruv Batra · Manolis Savva · Alexander William Clegg · Devendra Singh Chaplot

[ West Building Exhibit Halls ABC ]

We present the Habitat-Matterport 3D Semantics (HM3DSEM) dataset. HM3DSEM is the largest dataset of 3D real-world spaces with densely annotated semantics that is currently available to the academic community. It consists of 142,646 object instance annotations across 216 3D spaces and 3,100 rooms within those spaces. The scale, quality, and diversity of object annotations far exceed those of prior datasets. A key difference setting apart HM3DSEM from other datasets is the use of texture information to annotate pixel-accurate object boundaries. We demonstrate the effectiveness of HM3DSEM dataset for the Object Goal Navigation task using different methods. Policies trained using HM3DSEM perform outperform those trained on prior datasets. Introduction of HM3DSEM in the Habitat ObjectNav Challenge lead to an increase in participation from 400 submissions in 2021 to 1022 submissions in 2022. Project page: https://aihabitat.org/datasets/hm3d-semantics/

Poster
Tao Chu · Pan Zhang · Qiong Liu · Jiaqi Wang

[ West Building Exhibit Halls ABC ]

Understanding and modeling the 3D scene from a single image is a practical problem. A recent advance proposes a panoptic 3D scene reconstruction task that performs both 3D reconstruction and 3D panoptic segmentation from a single image. Although having made substantial progress, recent works only focus on top-down approaches that fill 2D instances into 3D voxels according to estimated depth, which hinders their performance by two ambiguities. (1) instance-channel ambiguity: The variable ids of instances in each scene lead to ambiguity during filling voxel channels with 2D information, confusing the following 3D refinement. (2) voxel-reconstruction ambiguity: 2D-to-3D lifting with estimated single view depth only propagates 2D information onto the surface of 3D regions, leading to ambiguity during the reconstruction of regions behind the frontal view surface. In this paper, we propose BUOL, a Bottom-Up framework with Occupancy-aware Lifting to address the two issues for panoptic 3D scene reconstruction from a single image. For instance-channel ambiguity, a bottom-up framework lifts 2D information to 3D voxels based on deterministic semantic assignments rather than arbitrary instance id assignments. The 3D voxels are then refined and grouped into 3D instances according to the predicted 2D instance centers. For voxel-reconstruction ambiguity, the estimated multi-plane occupancy …

Poster
Xinhua Cheng · Yanmin Wu · Mengxi Jia · Qian Wang · Jian Zhang

[ West Building Exhibit Halls ABC ]

Despite neural implicit representations demonstrating impressive high-quality view synthesis capacity, decomposing such representations into objects for instance-level editing is still challenging. Recent works learn object-compositional representations supervised by ground truth instance annotations and produce promising scene editing results. However, ground truth annotations are manually labeled and expensive in practice, which limits their usage in real-world scenes. In this work, we attempt to learn an object-compositional neural implicit representation for editable scene rendering by leveraging labels inferred from the off-the-shelf 2D panoptic segmentation networks instead of the ground truth annotations. We propose a novel framework named Panoptic Compositional Feature Field (PCFF), which introduces an instance quadruplet metric learning to build a discriminating panoptic feature space for reliable scene editing. In addition, we propose semantic-related strategies to further exploit the correlations between semantic and appearance attributes for achieving better rendering results. Experiments on multiple scene datasets including ScanNet, Replica, and ToyDesk demonstrate that our proposed method achieves superior performance for novel view synthesis and produces convincing real-world scene editing results. The code will be available.

Poster
Yash Bhalgat · João F. Henriques · Andrew Zisserman

[ West Building Exhibit Halls ABC ]

Transformers are powerful visual learners, in large part due to their conspicuous lack of manually-specified priors. This flexibility can be problematic in tasks that involve multiple-view geometry, due to the near-infinite possible variations in 3D shapes and viewpoints (requiring flexibility), and the precise nature of projective geometry (obeying rigid laws). To resolve this conundrum, we propose a “light touch” approach, guiding visual Transformers to learn multiple-view geometry but allowing them to break free when needed. We achieve this by using epipolar lines to guide the Transformer’s cross-attention maps, penalizing attention values outside the epipolar lines and encouraging higher attention along these lines since they contain geometrically plausible matches. Unlike previous methods, our proposal does not require any camera pose information at test-time. We focus on pose-invariant object instance retrieval, where standard Transformer networks struggle, due to the large differences in viewpoint between query and retrieved images. Experimentally, our method outperforms state-of-the-art approaches at object retrieval, without needing pose information at test-time.

Poster
Yilun Du · Cameron Smith · Ayush Tewari · Vincent Sitzmann

[ West Building Exhibit Halls ABC ]

We introduce a method for novel view synthesis given only a single wide-baseline stereo image pair. In this challenging regime, 3D scene points are regularly observed only once, requiring prior-based reconstruction of scene geometry and appearance. We find that existing approaches to novel view synthesis from sparse observations fail due to recovering incorrect 3D geometry and the high cost of differentiable rendering that precludes their scaling to large-scale training. We take a step towards resolving these shortcomings by formulating a multi-view transformer encoder, proposing an efficient, image-space epipolar line sampling scheme to assemble image features for a target ray, and a lightweight cross-attention-based renderer. Our contributions enable training of our method on a large-scale real-world dataset of indoor and outdoor scenes. In several ablation studies, we demonstrate that our contributions enable learning of powerful multi-view geometry priors while reducing both rendering time and memory footprint. We conduct extensive comparisons on held-out test scenes across two real-world datasets, significantly outperforming prior work on novel view synthesis from sparse image observations and achieving multi-view-consistent novel view synthesis.

Poster
Lukas Mehl · Jenny Schmalfuss · Azin Jahedi · Yaroslava Nalivayko · Andrés Bruhn

[ West Building Exhibit Halls ABC ]

While recent methods for motion and stereo estimation recover an unprecedented amount of details, such highly detailed structures are neither adequately reflected in the data of existing benchmarks nor their evaluation methodology. Hence, we introduce Spring -- a large, high-resolution, high-detail, computer-generated benchmark for scene flow, optical flow, and stereo. Based on rendered scenes from the open-source Blender movie “Spring”, it provides photo-realistic HD datasets with state-of-the-art visual effects and ground truth training data. Furthermore, we provide a website to upload, analyze and compare results. Using a novel evaluation methodology based on a super-resolved UHD ground truth, our Spring benchmark can assess the quality of fine structures and provides further detailed performance statistics on different image regions. Regarding the number of ground truth frames, Spring is 60× larger than the only scene flow benchmark, KITTI 2015, and 15× larger than the well-established MPI Sintel optical flow benchmark. Initial results for recent methods on our benchmark show that estimating fine details is indeed challenging, as their accuracy leaves significant room for improvement. The Spring benchmark and the corresponding datasets are available at http://spring-benchmark.org.

Poster
Viktor Rudnev · Mohamed Elgharib · Christian Theobalt · Vladislav Golyanik

[ West Building Exhibit Halls ABC ]

Asynchronously operating event cameras find many applications due to their high dynamic range, vanishingly low motion blur, low latency and low data bandwidth. The field saw remarkable progress during the last few years, and existing event-based 3D reconstruction approaches recover sparse point clouds of the scene. However, such sparsity is a limiting factor in many cases, especially in computer vision and graphics, that has not been addressed satisfactorily so far. Accordingly, this paper proposes the first approach for 3D-consistent, dense and photorealistic novel view synthesis using just a single colour event stream as input. At its core is a neural radiance field trained entirely in a self-supervised manner from events while preserving the original resolution of the colour event channels. Next, our ray sampling strategy is tailored to events and allows for data-efficient training. At test, our method produces results in the RGB space at unprecedented quality. We evaluate our method qualitatively and numerically on several challenging synthetic and real scenes and show that it produces significantly denser and more visually appealing renderings than the existing methods. We also demonstrate robustness in challenging scenarios with fast motion and under low lighting conditions. We release the newly recorded dataset and our …

Poster
Shengjie Zhu · Xiaoming Liu

[ West Building Exhibit Halls ABC ]

Video depth estimation infers the dense scene depth from immediate neighboring video frames. While recent works consider it a simplified structure-from-motion (SfM) problem, it still differs from the SfM in that significantly fewer view angels are available in inference. This setting, however, suits the mono-depth and optical flow estimation. This observation motivates us to decouple the video depth estimation into two components, a normalized pose estimation over a flowmap and a logged residual depth estimation over a mono-depth map. The two parts are unified with an efficient off-the-shelf scale alignment algorithm. Additionally, we stabilize the indoor two-view pose estimation by including additional projection constraints and ensuring sufficient camera translation. Though a two-view algorithm, we validate the benefit of the decoupling with the substantial performance improvement over multi-view iterative prior works on indoor and outdoor datasets. Codes and models are available at https://github.com/ShngJZ/LightedDepth.

Poster
Ruicheng Feng · Chongyi Li · Huaijin Chen · Shuai Li · Jinwei Gu · Chen Change Loy

[ West Building Exhibit Halls ABC ]

Due to the difficulty in collecting large-scale and perfectly aligned paired training data for Under-Display Camera (UDC) image restoration, previous methods resort to monitor-based image systems or simulation-based methods, sacrificing the realness of the data and introducing domain gaps. In this work, we revisit the classic stereo setup for training data collection -- capturing two images of the same scene with one UDC and one standard camera. The key idea is to “copy” details from a high-quality reference image and “paste” them on the UDC image. While being able to generate real training pairs, this setting is susceptible to spatial misalignment due to perspective and depth of field changes. The problem is further compounded by the large domain discrepancy between the UDC and normal images, which is unique to UDC restoration. In this paper, we mitigate the non-trivial domain discrepancy and spatial misalignment through a novel Transformer-based framework that generates well-aligned yet high-quality target data for the corresponding UDC input. This is made possible through two carefully designed components, namely, the Domain Alignment Module (DAM) and Geometric Alignment Module (GAM), which encourage robust and accurate discovery of correspondence between the UDC and normal views. Extensive experiments show that high-quality and …

Poster
Donggun Kim · Hyeonjoong Jang · Inchul Kim · Min H. Kim

[ West Building Exhibit Halls ABC ]

Dual-pixel photography is monocular RGB-D photography with an ultra-high resolution, enabling many applications in computational photography. However, there are still several challenges to fully utilizing dual-pixel photography. Unlike the conventional stereo pair, the dual pixel exhibits a bidirectional disparity that includes positive and negative values, depending on the focus plane depth in an image. Furthermore, capturing a wide range of dual-pixel disparity requires a shallow depth of field, resulting in a severely blurred image, degrading depth estimation performance. Recently, several data-driven approaches have been proposed to mitigate these two challenges. However, due to the lack of the ground-truth dataset of the dual-pixel disparity, existing data-driven methods estimate either inverse depth or blurriness map. In this work, we propose a self-supervised learning method that learns bidirectional disparity by utilizing the nature of anisotropic blur kernels in dual-pixel photography. We observe that the dual-pixel left/right images have reflective-symmetric anisotropic kernels, so their sum is equivalent to that of a conventional image. We take a self-supervised training approach with the novel kernel-split symmetry loss accounting for the phenomenon. Our method does not rely on a training dataset of dual-pixel disparity that does not exist yet. Our method can estimate a complete disparity map …

Poster
Chao Ning · Hongping Gan

[ West Building Exhibit Halls ABC ]

Predicting a high quality depth map from a single image is a challenging task, because it exists infinite possibility to project a 2D scene to the corresponding 3D scene. Recently, some studies introduced multi-head attention (MHA) modules to perform long-range interaction, which have shown significant progress in regressing the depth maps.The main functions of MHA can be loosely summarized to capture long-distance information and report the attention map by the relationship between pixels. However, due to the quadratic complexity of MHA, these methods can not leverage MHA to compute depth features in high resolution with an appropriate computational complexity. In this paper, we exploit a depth-wise convolution to obtain long-range information, and propose a novel trap attention, which sets some traps on the extended space for each pixel, and forms the attention mechanism by the feature retention ratio of convolution window, resulting in that the quadratic computational complexity can be converted to linear form. Then we build an encoder-decoder trap depth estimation network, which introduces a vision transformer as the encoder, and uses the trap attention to estimate the depth from single image in the decoder. Extensive experimental results demonstrate that our proposed network can outperform the state-of-the-art methods in …

Poster
Eric Brachmann · Tommaso Cavallari · Victor Adrian Prisacariu

[ West Building Exhibit Halls ABC ]

Learning-based visual relocalizers exhibit leading pose accuracy, but require hours or days of training. Since training needs to happen on each new scene again, long training times make learning-based relocalization impractical for most applications, despite its promise of high accuracy. In this paper we show how such a system can actually achieve the same accuracy in less than 5 minutes. We start from the obvious: a relocalization network can be split in a scene-agnostic feature backbone, and a scene-specific prediction head. Less obvious: using an MLP prediction head allows us to optimize across thousands of view points simultaneously in each single training iteration. This leads to stable and extremely fast convergence. Furthermore, we substitute effective but slow end-to-end training using a robust pose solver with a curriculum over a reprojection loss. Our approach does not require privileged knowledge, such a depth maps or a 3D model, for speedy training. Overall, our approach is up to 300x faster in mapping than state-of-the-art scene coordinate regression, while keeping accuracy on par. Code is available: https://nianticlabs.github.io/ace

Poster
Brevin Tilmon · Zhanghao Sun · Sanjeev J. Koppal · Yicheng Wu · Georgios Evangelidis · Ramzi Zahreddine · Gurunandan Krishnan · Sizhuo Ma · Jian Wang

[ West Building Exhibit Halls ABC ]

Active depth sensing achieves robust depth estimation but is usually limited by the sensing range. Naively increasing the optical power can improve sensing range but induces eye-safety concerns for many applications, including autonomous robots and augmented reality. In this paper, we propose an adaptive active depth sensor that jointly optimizes range, power consumption, and eye-safety. The main observation is that we need not project light patterns to the entire scene but only to small regions of interest where depth is necessary for the application and passive stereo depth estimation fails. We theoretically compare this adaptive sensing scheme with other sensing strategies, such as full-frame projection, line scanning, and point scanning. We show that, to achieve the same maximum sensing distance, the proposed method consumes the least power while having the shortest (best) eye-safety distance. We implement this adaptive sensing scheme with two hardware prototypes, one with a phase-only spatial light modulator (SLM) and the other with a micro-electro-mechanical (MEMS) mirror and diffractive optical elements (DOE). Experimental results validate the advantage of our method and demonstrate its capability of acquiring higher quality geometry adaptively.

Poster
Shun-Cheng Wu · Keisuke Tateno · Nassir Navab · Federico Tombari

[ West Building Exhibit Halls ABC ]

3D semantic scene graphs are a powerful holistic representation as they describe the individual objects and depict the relation between them. They are compact high-level graphs that enable many tasks requiring scene reasoning. In real-world settings, existing 3D estimation methods produce robust predictions that mostly rely on dense inputs. In this work, we propose a real-time framework that incrementally builds a consistent 3D semantic scene graph of a scene given an RGB image sequence. Our method consists of a novel incremental entity estimation pipeline and a scene graph prediction network. The proposed pipeline simultaneously reconstructs a sparse point map and fuses entity estimation from the input images. The proposed network estimates 3D semantic scene graphs with iterative message passing using multi-view and geometric features extracted from the scene entities. Extensive experiments on the 3RScan dataset show the effectiveness of the proposed method in this challenging task, outperforming state-of-the-art approaches.

Poster
Zhanghao Sun · Wei Ye · Jinhui Xiong · Gyeongmin Choe · Jialiang Wang · Shuochen Su · Rakesh Ranjan

[ West Building Exhibit Halls ABC ]

Direct time-of-flight (dToF) sensors are promising for next-generation on-device 3D sensing. However, limited by manufacturing capabilities in a compact module, the dToF data has low spatial resolution (e.g., ~20x30 for iPhone dToF), and it requires a super-resolution step before being passed to downstream tasks. In this paper, we solve this super-resolution problem by fusing the low-resolution dToF data with the corresponding high-resolution RGB guidance. Unlike the conventional RGB-guided depth enhancement approaches which perform the fusion in a per-frame manner, we propose the first multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the low-resolution dToF imaging. In addition, dToF sensors provide unique depth histogram information for each local patch, and we incorporate this dToF-specific feature in our network design to further alleviate spatial ambiguity. To evaluate our models on complex dynamic indoor environments and to provide a large-scale dToF sensor dataset, we introduce DyDToF, the first synthetic RGB-dToF video dataset that features dynamic objects and a realistic dToF simulator following the physical imaging process. We believe the methods and dataset are beneficial to a broad community as dToF depth sensing is becoming mainstream on mobile devices. Our code and data are publicly available. https://github.com/facebookresearch/DVSR/

Poster
Chittesh Thavamani · Mengtian Li · Francesco Ferroni · Deva Ramanan

[ West Building Exhibit Halls ABC ]

Many perception systems in mobile computing, autonomous navigation, and AR/VR face strict compute constraints that are particularly challenging for high-resolution input images. Previous works propose nonuniform downsamplers that “learn to zoom” on salient image regions, reducing compute while retaining task-relevant image information. However, for tasks with spatial labels (such as 2D/3D object detection and semantic segmentation), such distortions may harm performance. In this work (LZU), we “learn to zoom” in on the input image, compute spatial features, and then “unzoom” to revert any deformations. To enable efficient and differentiable unzooming, we approximate the zooming warp with a piecewise bilinear mapping that is invertible. LZU can be applied to any task with 2D spatial input and any model with 2D spatial features, and we demonstrate this versatility by evaluating on a variety of tasks and datasets: object detection on Argoverse-HD, semantic segmentation on Cityscapes, and monocular 3D object detection on nuScenes. Interestingly, we observe boosts in performance even when high-resolution sensor data is unavailable, implying that LZU can be used to “learn to upsample” as well. Code and additional visuals are available at https://tchittesh.github.io/lzu/.

Poster
Yuqi Wang · Yuntao Chen · Zhaoxiang Zhang

[ West Building Exhibit Halls ABC ]

The transformation of features from 2D perspective space to 3D space is essential to multi-view 3D object detection. Recent approaches mainly focus on the design of view transformation, either pixel-wisely lifting perspective view features into 3D space with estimated depth or grid-wisely constructing BEV features via 3D projection, treating all pixels or grids equally. However, choosing what to transform is also important but has rarely been discussed before. The pixels of a moving car are more informative than the pixels of the sky. To fully utilize the information contained in images, the view transformation should be able to adapt to different image regions according to their contents. In this paper, we propose a novel framework named FrustumFormer, which pays more attention to the features in instance regions via adaptive instance-aware resampling. Specifically, the model obtains instance frustums on the bird’s eye view by leveraging image view object proposals. An adaptive occupancy mask within the instance frustum is learned to refine the instance location. Moreover, the temporal frustum intersection could further reduce the localization uncertainty of objects. Comprehensive experiments on the nuScenes dataset demonstrate the effectiveness of FrustumFormer, and we achieve a new state-of-the-art performance on the benchmark. Codes and models …

Poster
Jiawei He · Yuntao Chen · Naiyan Wang · Zhaoxiang Zhang

[ West Building Exhibit Halls ABC ]

We explore long-term temporal visual correspondence-based optimization for 3D video object detection in this work. Visual correspondence refers to one-to-one mappings for pixels across multiple images. Correspondence-based optimization is the cornerstone for 3D scene reconstruction but is less studied in 3D video object detection, because moving objects violate multi-view geometry constraints and are treated as outliers during scene reconstruction. We address this issue by treating objects as first-class citizens during correspondence-based optimization. In this work, we propose BA-Det, an end-to-end optimizable object detector with object-centric temporal correspondence learning and featuremetric object bundle adjustment. Empirically, we verify the effectiveness and efficiency of BA-Det for multiple baseline 3D detectors under various setups. Our BA-Det achieves SOTA performance on the large-scale Waymo Open Dataset (WOD) with only marginal computation cost. Our code is available at https://github.com/jiaweihe1996/BA-Det.

Poster
Shengchao Zhou · Weizhou Liu · Chen Hu · Shuchang Zhou · Chao Ma

[ West Building Exhibit Halls ABC ]

In the field of 3D object detection for autonomous driving, the sensor portfolio including multi-modality and single-modality is diverse and complex. Since the multi-modal methods have system complexity while the accuracy of single-modal ones is relatively low, how to make a tradeoff between them is difficult. In this work, we propose a universal cross-modality knowledge distillation framework (UniDistill) to improve the performance of single-modality detectors. Specifically, during training, UniDistill projects the features of both the teacher and the student detector into Bird’s-Eye-View (BEV), which is a friendly representation for different modalities. Then, three distillation losses are calculated to sparsely align the foreground features, helping the student learn from the teacher without introducing additional cost during inference. Taking advantage of the similar detection paradigm of different detectors in BEV, UniDistill easily supports LiDAR-to-camera, camera-to-LiDAR, fusion-to-LiDAR and fusion-to-camera distillation paths. Furthermore, the three distillation losses can filter the effect of misaligned background information and balance between objects of different sizes, improving the distillation effectiveness. Extensive experiments on nuScenes demonstrate that UniDistill effectively improves the mAP and NDS of student detectors by 2.0%~3.2%.

Poster
Haojie Zhao · Junsong Chen · Lijun Wang · Huchuan Lu

[ West Building Exhibit Halls ABC ]

Compared with traditional RGB-only visual tracking, few datasets have been constructed for RGB-D tracking. In this paper, we propose ARKitTrack, a new RGB-D tracking dataset for both static and dynamic scenes captured by consumer-grade LiDAR scanners equipped on Apple’s iPhone and iPad. ARKitTrack contains 300 RGB-D sequences, 455 targets, and 229.7K video frames in total. Along with the bounding box annotations and frame-level attributes, we also annotate this dataset with 123.9K pixel-level target masks. Besides, the camera intrinsic and camera pose of each frame are provided for future developments. To demonstrate the potential usefulness of this dataset, we further present a unified baseline for both box-level and pixel-level tracking, which integrates RGB features with bird’s-eye-view representations to better explore cross-modality 3D geometry. In-depth empirical analysis has verified that the ARKitTrack dataset can significantly facilitate RGB-D tracking and that the proposed baseline method compares favorably against the state of the arts. The source code and dataset will be released.

Poster
Qi Ming · Lingjuan Miao · Zhe Ma · Lin Zhao · Zhiqiang Zhou · Xuhui Huang · Yuanpei Chen · Yufei Guo

[ West Building Exhibit Halls ABC ]

Intersection-over-Union (IoU) is the most popular metric to evaluate regression performance in 3D object detection. Recently, there are also some methods applying IoU to the optimization of 3D bounding box regression. However, we demonstrate through experiments and mathematical proof that the 3D IoU loss suffers from abnormal gradient w.r.t. angular error and object scale, which further leads to slow convergence and suboptimal regression process, respectively. In this paper, we propose a Gradient-Corrected IoU (GCIoU) loss to achieve fast and accurate 3D bounding box regression. Specifically, a gradient correction strategy is designed to endow 3D IoU loss with a reasonable gradient. It ensures that the model converges quickly in the early stage of training, and helps to achieve fine-grained refinement of bounding boxes in the later stage. To solve suboptimal regression of 3D IoU loss for objects at different scales, we introduce a gradient rescaling strategy to adaptively optimize the step size. Finally, we integrate GCIoU Loss into multiple models to achieve stable performance gains and faster model convergence. Experiments on KITTI dataset demonstrate superiority of the proposed method. The code is available at https://github.com/ming71/GCIoU-loss.

Poster
Han Liu · Yuhao Wu · Zhiyuan Yu · Yevgeniy Vorobeychik · Ning Zhang

[ West Building Exhibit Halls ABC ]

LiDAR-based perception is a central component of autonomous driving, playing a key role in tasks such as vehicle localization and obstacle detection. Since the safety of LiDAR-based perceptual pipelines is critical to safe autonomous driving, a number of past efforts have investigated its vulnerability under adversarial perturbations of raw point cloud inputs. However, most such efforts have focused on investigating the impact of such perturbations on predictions (integrity), and little has been done to understand the impact on latency (availability), a critical concern for real-time cyber-physical systems. We present the first systematic investigation of the availability of LiDAR detection pipelines, and SlowLiDAR, an adversarial perturbation attack that maximizes LiDAR detection runtime. The attack overcomes the technical challenges posed by the non-differentiable parts of the LiDAR detection pipelines by using differentiable proxies and uses a novel loss function that effectively captures the impact of adversarial perturbations on the execution time of the pipeline. Extensive experimental results show that SlowLiDAR can significantly increase the latency of the six most popular LiDAR detection pipelines while maintaining imperceptibility.

Poster
Nishant Kumar · Siniša Šegvić · Abouzar Eslami · Stefan Gumhold

[ West Building Exhibit Halls ABC ]

Real-world deployment of reliable object detectors is crucial for applications such as autonomous driving. However, general-purpose object detectors like Faster R-CNN are prone to providing overconfident predictions for outlier objects. Recent outlier-aware object detection approaches estimate the density of instance-wide features with class-conditional Gaussians and train on synthesized outlier features from their low-likelihood regions. However, this strategy does not guarantee that the synthesized outlier features will have a low likelihood according to the other class-conditional Gaussians. We propose a novel outlier-aware object detection framework that distinguishes outliers from inlier objects by learning the joint data distribution of all inlier classes with an invertible normalizing flow. The appropriate sampling of the flow model ensures that the synthesized outliers have a lower likelihood than inliers of all object classes, thereby modeling a better decision boundary between inlier and outlier objects. Our approach significantly outperforms the state-of-the-art for outlier-aware object detection on both image and video datasets.

Poster
Chao Zhou · Yanan Zhang · Jiaxin Chen · Di Huang

[ West Building Exhibit Halls ABC ]

A key challenge for LiDAR-based 3D object detection is to capture sufficient features from large scale 3D scenes especially for distant or/and occluded objects. Albeit recent efforts made by Transformers with the long sequence modeling capability, they fail to properly balance the accuracy and efficiency, suffering from inadequate receptive fields or coarse-grained holistic correlations. In this paper, we propose an Octree-based Transformer, named OcTr, to address this issue. It first constructs a dynamic octree on the hierarchical feature pyramid through conducting self-attention on the top level and then recursively propagates to the level below restricted by the octants, which captures rich global context in a coarse-to-fine manner while maintaining the computational complexity under control. Furthermore, for enhanced foreground perception, we propose a hybrid positional embedding, composed of the semantic-aware positional embedding and attention mask, to fully exploit semantic and geometry clues. Extensive experiments are conducted on the Waymo Open Dataset and KITTI Dataset, and OcTr reaches newly state-of-the-art results.

Poster
Sijie Wang · Qiyu Kang · Rui She · Wei Wang · Kai Zhao · Yang Song · Wee Peng Tay

[ West Building Exhibit Halls ABC ]

LiDAR relocalization plays a crucial role in many fields, including robotics, autonomous driving, and computer vision. LiDAR-based retrieval from a database typically incurs high computation storage costs and can lead to globally inaccurate pose estimations if the database is too sparse. On the other hand, pose regression methods take images or point clouds as inputs and directly regress global poses in an end-to-end manner. They do not perform database matching and are more computationally efficient than retrieval techniques. We propose HypLiLoc, a new model for LiDAR pose regression. We use two branched backbones to extract 3D features and 2D projection features, respectively. We consider multi-modal feature fusion in both Euclidean and hyperbolic spaces to obtain more effective feature representations. Experimental results indicate that HypLiLoc achieves state-of-the-art performance in both outdoor and indoor datasets. We also conduct extensive ablation studies on the framework design, which demonstrate the effectiveness of multi-modal feature extraction and multi-space embedding. Our code is released at: https://github.com/sijieaaa/HypLiLoc

Poster
Song Wang · Wentong Li · Wenyu Liu · Xiaolu Liu · Jianke Zhu

[ West Building Exhibit Halls ABC ]

Semantic map construction under bird’s-eye view (BEV) plays an essential role in autonomous driving. In contrast to camera image, LiDAR provides the accurate 3D observations to project the captured 3D features onto BEV space inherently. However, the vanilla LiDAR-based BEV feature often contains many indefinite noises, where the spatial features have little texture and semantic cues. In this paper, we propose an effective LiDAR-based method to build semantic map. Specifically, we introduce a BEV pyramid feature decoder that learns the robust multi-scale BEV features for semantic map construction, which greatly boosts the accuracy of the LiDAR-based method. To mitigate the defects caused by lacking semantic cues in LiDAR data, we present an online Camera-to-LiDAR distillation scheme to facilitate the semantic learning from image to point cloud. Our distillation scheme consists of feature-level and logit-level distillation to absorb the semantic information from camera in BEV. The experimental results on challenging nuScenes dataset demonstrate the efficacy of our proposed LiDAR2Map on semantic map construction, which significantly outperforms the previous LiDAR-based methods over 27.9% mIoU and even performs better than the state-of-the-art camera-based approaches. Source code is available at: https://github.com/songw-zju/LiDAR2Map.

Poster
Chenhang He · Ruihuang Li · Yabin Zhang · Shuai Li · Lei Zhang

[ West Building Exhibit Halls ABC ]

Point cloud sequences are commonly used to accurately detect 3D objects in applications such as autonomous driving. Current top-performing multi-frame detectors mostly follow a Detect-and-Fuse framework, which extracts features from each frame of the sequence and fuses them to detect the objects in the current frame. However, this inevitably leads to redundant computation since adjacent frames are highly correlated. In this paper, we propose an efficient Motion-guided Sequential Fusion (MSF) method, which exploits the continuity of object motion to mine useful sequential contexts for object detection in the current frame. We first generate 3D proposals on the current frame and propagate them to preceding frames based on the estimated velocities. The points-of-interest are then pooled from the sequence and encoded as proposal features. A novel Bidirectional Feature Aggregation (BiFA) module is further proposed to facilitate the interactions of proposal features across frames. Besides, we optimize the point cloud pooling by a voxel-based sampling technique so that millions of points can be processed in several milliseconds. The proposed MSF method achieves not only better efficiency than other multi-frame detectors but also leading accuracy, with 83.12% and 78.30% mAP on the LEVEL1 and LEVEL2 test sets of Waymo Open Dataset, respectively. Codes …

Poster
Fei Xue · Ignas Budvytis · Roberto Cipolla

[ West Building Exhibit Halls ABC ]

Visual localization is a fundamental task for various applications including autonomous driving and robotics. Prior methods focus on extracting large amounts of often redundant locally reliable features, resulting in limited efficiency and accuracy, especially in large-scale environments under challenging conditions. Instead, we propose to extract globally reliable features by implicitly embedding high-level semantics into both the detection and description processes. Specifically, our semantic-aware detector is able to detect keypoints from reliable regions (e.g. building, traffic lane) and suppress reliable areas (e.g. sky, car) implicitly instead of relying on explicit semantic labels. This boosts the accuracy of keypoint matching by reducing the number of features sensitive to appearance changes and avoiding the need of additional segmentation networks at test time. Moreover, our descriptors are augmented with semantics and have stronger discriminative ability, providing more inliers at test time. Particularly, experiments on long-term large-scale visual localization Aachen Day-Night and RobotCar-Seasons datasets demonstrate that our model outperforms previous local features and gives competitive accuracy to advanced matchers but is about 2 and 3 times faster when using 2k and 4k keypoints, respectively.

Poster
Lucas Nunes · Louis Wiesmann · Rodrigo Marcuzzi · Xieyuanli Chen · Jens Behley · Cyrill Stachniss

[ West Building Exhibit Halls ABC ]

Semantic perception is a core building block in autonomous driving, since it provides information about the drivable space and location of other traffic participants. For learning-based perception, often a large amount of diverse training data is necessary to achieve high performance. Data labeling is usually a bottleneck for developing such methods, especially for dense prediction tasks, e.g., semantic segmentation or panoptic segmentation. For 3D LiDAR data, the annotation process demands even more effort than for images. Especially in autonomous driving, point clouds are sparse, and objects appearance depends on its distance from the sensor, making it harder to acquire large amounts of labeled training data. This paper aims at taking an alternative path proposing a self-supervised representation learning method for 3D LiDAR data. Our approach exploits the vehicle motion to match objects across time viewed in different scans. We then train a model to maximize the point-wise feature similarities from points of the associated object in different scans, which enables to learn a consistent representation across time. The experimental results show that our approach performs better than previous state-of-the-art self-supervised representation learning methods when fine-tuning to different downstream tasks. We furthermore show that with only 10% of labeled data, a …

Poster
Bo Pang · Hongchi Xia · Cewu Lu

[ West Building Exhibit Halls ABC ]

Due to the difficulty of annotating the 3D LiDAR data of autonomous driving, an efficient unsupervised 3D representation learning method is important. In this paper, we design the Triangle Constrained Contrast (TriCC) framework tailored for autonomous driving scenes which learns 3D unsupervised representations through both the multimodal information and dynamic of temporal sequences. We treat one camera image and two LiDAR point clouds with different timestamps as a triplet. And our key design is the consistent constraint that automatically finds matching relationships among the triplet through “self-cycle” and learns representations from it. With the matching relations across the temporal dimension and modalities, we can further conduct a triplet contrast to improve learning efficiency. To the best of our knowledge, TriCC is the first framework that unifies both the temporal and multimodal semantics, which means it utilizes almost all the information in autonomous driving scenes. And compared with previous contrastive methods, it can automatically dig out contrasting pairs with higher difficulty, instead of relying on handcrafted ones. Extensive experiments are conducted with Minkowski-UNet and VoxelNet on several semantic segmentation and 3D detection datasets. Results show that TriCC learns effective representations with much fewer training iterations and improves the SOTA results greatly …

Poster
Angelika Ando · Spyros Gidaris · Andrei Bursuc · Gilles Puy · Alexandre Boulch · Renaud Marlet

[ West Building Exhibit Halls ABC ]

Casting semantic segmentation of outdoor LiDAR point clouds as a 2D problem, e.g., via range projection, is an effective and popular approach. These projection-based methods usually benefit from fast computations and, when combined with techniques which use other point cloud representations, achieve state-of-the-art results. Today, projection-based methods leverage 2D CNNs but recent advances in computer vision show that vision transformers (ViTs) have achieved state-of-the-art results in many image-based benchmarks. In this work, we question if projection-based methods for 3D semantic segmentation can benefit from these latest improvements on ViTs. We answer positively but only after combining them with three key ingredients: (a) ViTs are notoriously hard to train and require a lot of training data to learn powerful representations. By preserving the same backbone architecture as for RGB images, we can exploit the knowledge from long training on large image collections that are much cheaper to acquire and annotate than point clouds. We reach our best results with pre-trained ViTs on large image datasets. (b) We compensate ViTs’ lack of inductive bias by substituting a tailored convolutional stem for the classical linear embedding layer. (c) We refine pixel-wise predictions with a convolutional decoder and a skip connection from the convolutional …

Poster
Yanhao Wu · Tong Zhang · Wei Ke · Sabine Süsstrunk · Mathieu Salzmann

[ West Building Exhibit Halls ABC ]

Self-supervised learning (SSL) has the potential to benefit many applications, particularly those where manually annotating data is cumbersome. One such situation is the semantic segmentation of point clouds. In this context, existing methods employ contrastive learning strategies and define positive pairs by performing various augmentation of point clusters in a single frame. As such, these methods do not exploit the temporal nature of LiDAR data. In this paper, we introduce an SSL strategy that leverages positive pairs in both the spatial and temporal domains. To this end, we design (i) a point-to-cluster learning strategy that aggregates spatial information to distinguish objects; and (ii) a cluster-to-cluster learning strategy based on unsupervised object tracking that exploits temporal correspondences. We demonstrate the benefits of our approach via extensive experiments performed by self-supervised training on two large-scale LiDAR datasets and transferring the resulting models to other point cloud segmentation benchmarks. Our results evidence that our method outperforms the state-of-the-art point cloud SSL methods.

Poster
Utkarsh Mall · Bharath Hariharan · Kavita Bala

[ West Building Exhibit Halls ABC ]

Automatic remote sensing tools can help inform many large-scale challenges such as disaster management, climate change, etc. While a vast amount of spatio-temporal satellite image data is readily available, most of it remains unlabelled. Without labels, this data is not very useful for supervised learning algorithms. Self-supervised learning instead provides a way to learn effective representations for various downstream tasks without labels. In this work, we leverage characteristics unique to satellite images to learn better self-supervised features. Specifically, we use the temporal signal to contrast images with long-term and short-term differences, and we leverage the fact that satellite images do not change frequently. Using these characteristics, we formulate a new loss contrastive loss called Change-Aware Contrastive (CACo) Loss. Further, we also present a novel method of sampling different geographical regions. We show that leveraging these properties leads to better performance on diverse downstream tasks. For example, we see a 6.5% relative improvement for semantic segmentation and an 8.5% relative improvement for change detection over the best-performing baseline with our method.

Poster
Yaqi Shen · Le Hui · Jin Xie · Jian Yang

[ West Building Exhibit Halls ABC ]

3D scene flow estimation aims to estimate point-wise motions between two consecutive frames of point clouds. Superpoints, i.e., points with similar geometric features, are usually employed to capture similar motions of local regions in 3D scenes for scene flow estimation. However, in existing methods, superpoints are generated with the offline clustering methods, which cannot characterize local regions with similar motions for complex 3D scenes well, leading to inaccurate scene flow estimation. To this end, we propose an iterative end-to-end superpoint based scene flow estimation framework, where the superpoints can be dynamically updated to guide the point-level flow prediction. Specifically, our framework consists of a flow guided superpoint generation module and a superpoint guided flow refinement module. In our superpoint generation module, we utilize the bidirectional flow information at the previous iteration to obtain the matching points of points and superpoint centers for soft point-to-superpoint association construction, in which the superpoints are generated for pairwise point clouds. With the generated superpoints, we first reconstruct the flow for each point by adaptively aggregating the superpoint-level flow, and then encode the consistency between the reconstructed flow of pairwise point clouds. Finally, we feed the consistency encoding along with the reconstructed flow into GRU …

Poster
Itai Lang · Dror Aiger · Forrester Cole · Shai Avidan · Michael Rubinstein

[ West Building Exhibit Halls ABC ]

Scene flow estimation is a long-standing problem in computer vision, where the goal is to find the 3D motion of a scene from its consecutive observations. Recently, there have been efforts to compute the scene flow from 3D point clouds. A common approach is to train a regression model that consumes source and target point clouds and outputs the per-point translation vector. An alternative is to learn point matches between the point clouds concurrently with regressing a refinement of the initial correspondence flow. In both cases, the learning task is very challenging since the flow regression is done in the free 3D space, and a typical solution is to resort to a large annotated synthetic dataset. We introduce SCOOP, a new method for scene flow estimation that can be learned on a small amount of data without employing ground-truth flow supervision. In contrast to previous work, we train a pure correspondence model focused on learning point feature representation and initialize the flow as the difference between a source point and its softly corresponding target point. Then, in the run-time phase, we directly optimize a flow refinement component with a self-supervised objective, which leads to a coherent and accurate flow field …

Poster
Anthony Chen · Kevin Zhang · Renrui Zhang · Zihan Wang · Yuheng Lu · Yandong Guo · Shanghang Zhang

[ West Building Exhibit Halls ABC ]

Masked Autoencoders learn strong visual representations and achieve state-of-the-art results in several independent modalities, yet very few works have addressed their capabilities in multi-modality settings. In this work, we focus on point cloud and RGB image data, two modalities that are often presented together in the real world and explore their meaningful interactions. To improve upon the cross-modal synergy in existing works, we propose PiMAE, a self-supervised pre-training framework that promotes 3D and 2D interaction through three aspects. Specifically, we first notice the importance of masking strategies between the two sources and utilize a projection module to complementarily align the mask and visible tokens of the two modalities. Then, we utilize a well-crafted two-branch MAE pipeline with a novel shared decoder to promote cross-modality interaction in the mask tokens. Finally, we design a unique cross-modal reconstruction module to enhance representation learning for both modalities. Through extensive experiments performed on large-scale RGB-D scene understanding benchmarks (SUN RGB-D and ScannetV2), we discover it is nontrivial to interactively learn point-image features, where we greatly improve multiple 3D detectors, 2D detectors and few-shot classifiers by 2.9%, 6.7%, and 2.4%, respectively. Code is available at https://github.com/BLVLab/PiMAE.

Poster
Yaomin Huang · Ning Liu · Zhengping Che · Zhiyuan Xu · Chaomin Shen · Yaxin Peng · Guixu Zhang · Xinmei Liu · Feifei Feng · Jian Tang

[ West Building Exhibit Halls ABC ]

Channel pruning has been widely studied as a prevailing method that effectively reduces both computational cost and memory footprint of the original network while keeping a comparable accuracy performance. Though great success has been achieved in channel pruning for 2D image-based convolutional networks (CNNs), existing works seldom extend the channel pruning methods to 3D point-based neural networks (PNNs). Directly implementing the 2D CNN channel pruning methods to PNNs undermine the performance of PNNs because of the different representations of 2D images and 3D point clouds as well as the network architecture disparity. In this paper, we proposed CP^3, which is a Channel Pruning Plug-in for Point-based network. CP^3 is elaborately designed to leverage the characteristics of point clouds and PNNs in order to enable 2D channel pruning methods for PNNs. Specifically, it presents a coordinate-enhanced channel importance metric to reflect the correlation between dimensional information and individual channel features, and it recycles the discarded points in PNN’s sampling process and reconsiders their potentially-exclusive information to enhance the robustness of channel pruning. Experiments on various PNN architectures show that CP^3 constantly improves state-of-the-art 2D CNN pruning approaches on different point cloud tasks. For instance, our compressed PointNeXt-S on ScanObjectNN achieves an …

Poster
Xiuwei Xu · Ziwei Wang · Jie Zhou · Jiwen Lu

[ West Building Exhibit Halls ABC ]

In this paper, we propose binary sparse convolutional networks called BSC-Net for efficient point cloud analysis. We empirically observe that sparse convolution operation causes larger quantization errors than standard convolution. However, conventional network quantization methods directly binarize the weights and activations in sparse convolution, resulting in performance drop due to the significant quantization loss. On the contrary, we search the optimal subset of convolution operation that activates the sparse convolution at various locations for quantization error alleviation, and the performance gap between real-valued and binary sparse convolutional networks is closed without complexity overhead. Specifically, we first present the shifted sparse convolution that fuses the information in the receptive field for the active sites that match the pre-defined positions. Then we employ the differentiable search strategies to discover the optimal opsitions for active site matching in the shifted sparse convolution, and the quantization errors are significantly alleviated for efficient point cloud analysis. For fair evaluation of the proposed method, we empirically select the recently advances that are beneficial for sparse convolution network binarization to construct a strong baseline. The experimental results on ScanNet and NYU Depth v2 show that our BSC-Net achieves significant improvement upon our srtong baseline and outperforms the …

Poster
Junming Zhang · Haomeng Zhang · Ram Vasudevan · Matthew Johnson-Roberson

[ West Building Exhibit Halls ABC ]

Most real-world 3D measurements from depth sensors are incomplete, and to address this issue the point cloud completion task aims to predict the complete shapes of objects from partial observations. Previous works often adapt an encoder-decoder architecture, where the encoder is trained to extract embeddings that are used as inputs to generate predictions from the decoder. However, the learned embeddings have sparse distribution in the feature space, which leads to worse generalization results during testing. To address these problems, this paper proposes a hyperspherical module, which transforms and normalizes embeddings from the encoder to be on a unit hypersphere. With the proposed module, the magnitude and direction of the output hyperspherical embedding are decoupled and only the directional information is optimized. We theoretically analyze the hyperspherical embedding and show that it enables more stable training with a wider range of learning rates and more compact embedding distributions. Experiment results show consistent improvement of point cloud completion in both single-task and multi-task learning, which demonstrates the effectiveness of the proposed method.

Poster
Chengzhi Wu · Junwei Zheng · Julius Pfrommer · Jürgen Beyerer

[ West Building Exhibit Halls ABC ]

Point cloud sampling is a less explored research topic for this data representation. The most commonly used sampling methods are still classical random sampling and farthest point sampling. With the development of neural networks, various methods have been proposed to sample point clouds in a task-based learning manner. However, these methods are mostly generative-based, rather than selecting points directly using mathematical statistics. Inspired by the Canny edge detection algorithm for images and with the help of the attention mechanism, this paper proposes a non-generative Attention-based Point cloud Edge Sampling method (APES), which captures salient points in the point cloud outline. Both qualitative and quantitative experimental results show the superior performance of our sampling method on common benchmark tasks.

Poster
Renrui Zhang · Liuhui Wang · Yali Wang · Peng Gao · Hongsheng Li · Jianbo Shi

[ West Building Exhibit Halls ABC ]

We present a Non-parametric Network for 3D point cloud analysis, Point-NN, which consists of purely non-learnable components: farthest point sampling (FPS), k-nearest neighbors (k-NN), and pooling operations, with trigonometric functions. Surprisingly, it performs well on various 3D tasks, requiring no parameters or training, and even surpasses existing fully trained models. Starting from this basic non-parametric model, we propose two extensions. First, Point-NN can serve as a base architectural framework to construct Parametric Networks by simply inserting linear layers on top. Given the superior non-parametric foundation, the derived Point-PN exhibits a high performance-efficiency trade-off with only a few learnable parameters. Second, Point-NN can be regarded as a plug-and-play module for the already trained 3D models during inference. Point-NN captures the complementary geometric knowledge and enhances existing methods for different 3D benchmarks without re-training. We hope our work may cast a light on the community for understanding 3D point clouds with non-parametric methods. Code is available at https://github.com/ZrrSkywalker/Point-NN.

Poster
Yun He · Danhang Tang · Yinda Zhang · Xiangyang Xue · Yanwei Fu

[ West Building Exhibit Halls ABC ]

Most existing point cloud upsampling methods have roughly three steps: feature extraction, feature expansion and 3D coordinate prediction. However, they usually suffer from two critical issues: (1) fixed upsampling rate after one-time training, since the feature expansion unit is customized for each upsampling rate; (2) outliers or shrinkage artifact caused by the difficulty of precisely predicting 3D coordinates or residuals of upsampled points. To adress them, we propose a new framework for accurate point cloud upsampling that supports arbitrary upsampling rates. Our method first interpolates the low-res point cloud according to a given upsampling rate. And then refine the positions of the interpolated points with an iterative optimization process, guided by a trained model estimating the difference between the current point cloud and the high-res target. Extensive quantitative and qualitative results on benchmarks and downstream tasks demonstrate that our method achieves the state-of-the-art accuracy and efficiency.

Poster
Jiacheng Deng · Chuxin Wang · Jiahao Lu · Jianfeng He · Tianzhu Zhang · Jiyang Yu · Zhe Zhang

[ West Building Exhibit Halls ABC ]

Unsupervised point cloud shape correspondence aims to obtain dense point-to-point correspondences between point clouds without manually annotated pairs. However, humans and some animals have bilateral symmetry and various orientations, which leads to severe mispredictions of symmetrical parts. Besides, point cloud noise disrupts consistent representations for point cloud and thus degrades the shape correspondence accuracy. To address the above issues, we propose a Self-Ensembling ORientation-aware Network termed SE-ORNet. The key of our approach is to exploit an orientation estimation module with a domain adaptive discriminator to align the orientations of point cloud pairs, which significantly alleviates the mispredictions of symmetrical parts. Additionally, we design a self-ensembling framework for unsupervised point cloud shape correspondence. In this framework, the disturbances of point cloud noise are overcome by perturbing the inputs of the student and teacher networks with different data augmentations and constraining the consistency of predictions. Extensive experiments on both human and animal datasets show that our SE-ORNet can surpass state-of-the-art unsupervised point cloud shape correspondence methods.

Poster
Shengwei Qin · Zhong Li · Ligang Liu

[ West Building Exhibit Halls ABC ]

We introduce a non-local graph attention network (NLGAT), which generates a novel global descriptor through two sub-networks for robust 3D shape classification. In the first sub-network, we capture the global relationships between points (i.e., point-point features) by designing a global relationship network (GRN). In the second sub-network, we enhance the local features with a geometric shape attention map obtained from a global structure network (GSN). To keep rotation invariant and extract more information from sparse point clouds, all sub-networks use the Gram matrices with different dimensions as input for working with robust classification. Additionally, GRN effectively preserves the low-frequency features and improves the classification results. Experimental results on various datasets exhibit that the classification effect of the NLGAT model is better than other state-of-the-art models. Especially, in the case of sparse point clouds (64 points) with noise under arbitrary SO(3) rotation, the classification result (85.4%) of NLGAT is improved by 39.4% compared with the best development of other methods.

Poster
Hao Yu · Zheng Qin · Ji Hou · Saleh · Dongsheng Li · Benjamin Busam · Slobodan Ilic

[ West Building Exhibit Halls ABC ]

The intrinsic rotation invariance lies at the core of matching point clouds with handcrafted descriptors. However, it is widely despised by recent deep matchers that obtain the rotation invariance extrinsically via data augmentation. As the finite number of augmented rotations can never span the continuous SO(3) space, these methods usually show instability when facing rotations that are rarely seen. To this end, we introduce RoITr, a Rotation-Invariant Transformer to cope with the pose variations in the point cloud matching task. We contribute both on the local and global levels. Starting from the local level, we introduce an attention mechanism embedded with Point Pair Feature (PPF)-based coordinates to describe the pose-invariant geometry, upon which a novel attention-based encoder-decoder architecture is constructed. We further propose a global transformer with rotation-invariant cross-frame spatial awareness learned by the self-attention mechanism, which significantly improves the feature distinctiveness and makes the model robust with respect to the low overlap. Experiments are conducted on both the rigid and non-rigid public benchmarks, where RoITr outperforms all the state-of-the-art models by a considerable margin in the low-overlapping scenarios. Especially when the rotations are enlarged on the challenging 3DLoMatch benchmark, RoITr surpasses the existing methods by at least 13 and …

Poster
Zheng Qin · Hao Yu · Changjian Wang · Yuxing Peng · Kai Xu

[ West Building Exhibit Halls ABC ]

We study the problem of outlier correspondence pruning for non-rigid point cloud registration. In rigid registration, spatial consistency has been a commonly used criterion to discriminate outliers from inliers. It measures the compatibility of two correspondences by the discrepancy between the respective distances in two point clouds. However, spatial consistency no longer holds in non-rigid cases and outlier rejection for non-rigid registration has not been well studied. In this work, we propose Graph-based Spatial Consistency Network (GraphSCNet) to filter outliers for non-rigid registration. Our method is based on the fact that non-rigid deformations are usually locally rigid, or local shape preserving. We first design a local spatial consistency measure over the deformation graph of the point cloud, which evaluates the spatial compatibility only between the correspondences in the vicinity of a graph node. An attention-based non-rigid correspondence embedding module is then devised to learn a robust representation of non-rigid correspondences from local spatial consistency. Despite its simplicity, GraphSCNet effectively improves the quality of the putative correspondences and attains state-of-the-art performance on three challenging benchmarks. Our code and models are available at https://github.com/qinzheng93/GraphSCNet.

Poster
Tianlu Zhang · Hongyuan Guo · Qiang Jiao · Qiang Zhang · Jungong Han

[ West Building Exhibit Halls ABC ]

Most current RGB-T trackers adopt a two-stream structure to extract unimodal RGB and thermal features and complex fusion strategies to achieve multi-modal feature fusion, which require a huge number of parameters, thus hindering their real-life applications. On the other hand, a compact RGB-T tracker may be computationally efficient but encounter non-negligible performance degradation, due to the weakening of feature representation ability. To remedy this situation, a cross-modality distillation framework is presented to bridge the performance gap between a compact tracker and a powerful tracker. Specifically, a specific-common feature distillation module is proposed to transform the modality-common information as well as the modality-specific information from a deeper two-stream network to a shallower single-stream network. In addition, a multi-path selection distillation module is proposed to instruct a simple fusion module to learn more accurate multi-modal information from a well-designed fusion mechanism by using multiple paths. We validate the effectiveness of our method with extensive experiments on three RGB-T benchmarks, which achieves state-of-the-art performance but consumes much less computational resources.

Poster
Daniel Barath · Denys Rozumnyi · Ivan Eichhardt · Levente Hajder · Jiri Matas

[ West Building Exhibit Halls ABC ]

We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies. The problem is formalized as finding dominant model instances progressively without forming crisp point-to-model assignments. Dominant instances are found via a RANSAC-like sampling and a consolidation process driven by a model quality function considering previously proposed instances. New ones are found by clustering in the consensus space. This new formulation leads to a simple iterative algorithm with state-of-the-art accuracy while running in real-time on a number of vision problems -- at least two orders of magnitude faster than the competitors on two-view motion estimation. Also, we propose a deterministic sampler reflecting the fact that real-world data tend to form spatially coherent structures. The sampler returns connected components in a progressively densified neighborhood-graph. We present a number of applications where the use of multiple geometric models improves accuracy. These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects; and we also propose a way of using multiple homographies in global SfM algorithms. Source code: https://github.com/danini/clustering-in-consensus-space.

Poster
Dihe Huang · Ying Chen · Yong Liu · Jianlin Liu · Shang Xu · Wenlong Wu · Yikang Ding · Fan Tang · Chengjie Wang

[ West Building Exhibit Halls ABC ]

The detector-free feature matching approaches are currently attracting great attention thanks to their excellent performance. However, these methods still struggle at large-scale and viewpoint variations, due to the geometric inconsistency resulting from the application of the mutual nearest neighbour criterion (i.e., one-to-one assignment) in patch-level matching. Accordingly, we introduce AdaMatcher, which first accomplishes the feature correlation and co-visible area estimation through an elaborate feature interaction module, then performs adaptive assignment on patch-level matching while estimating the scales between images, and finally refines the co-visible matches through scale alignment and sub-pixel regression module. Extensive experiments show that AdaMatcher outperforms solid baselines and achieves state-of-the-art results on many downstream tasks. Additionally, the adaptive assignment and sub-pixel refinement module can be used as a refinement network for other matching methods, such as SuperGlue, to boost their performance further. The code will be publicly available at https://github.com/AbyssGaze/AdaMatcher.

Poster
Zhibo Rao · Bangshu Xiong · Mingyi He · Mochu Xiang · Renjie He · Zhelun Shen · Xing Li

[ West Building Exhibit Halls ABC ]

Recently, many deep stereo matching methods have begun to focus on cross-domain performance, achieving impressive achievements. However, these methods did not deal with the significant volatility of generalization performance among different training epochs. Inspired by masked representation learning and multi-task learning, this paper designs a simple and effective masked representation for domain generalized stereo matching. First, we feed the masked left and complete right images as input into the models. Then, we add a lightweight and simple decoder following the feature extraction module to recover the original left image. Finally, we train the models with two tasks (stereo matching and image reconstruction) as a pseudo-multi-task learning framework, promoting models to learn structure information and to improve generalization performance. We implement our method on two well-known architectures (CFNet and LacGwcNet) to demonstrate its effectiveness. Experimental results on multi-datasets show that: (1) our method can be easily plugged into the current various stereo matching models to improve generalization performance; (2) our method can reduce the significant volatility of generalization performance among different training epochs; (3) we find that the current methods prefer to choose the best results among different training epochs as generalization performance, but it is impossible to select the best …

Poster
Han Ling · Yinghui Sun · Quansen Sun · Zhenwen Ren

[ West Building Exhibit Halls ABC ]

This paper address the problem of optical expansion (OE). OE describes the object scale change between two frames, widely used in monocular 3D vision tasks. Previous methods estimate optical expansion mainly from optical flow results, but this two-stage architecture makes their results limited by the accuracy of optical flow and less robust. To solve these problems, we propose the concept of 3D optical flow by integrating optical expansion into the 2D optical flow, which is implemented by a plug-and-play module, namely TPCV. TPCV implements matching features at the correct location and scale, thus allowing the simultaneous optimization of optical flow and optical expansion tasks. Experimentally, we apply TPCV to the RAFT optical flow baseline. Experimental results show that the baseline optical flow performance is substantially improved. Moreover, we apply the optical flow and optical expansion results to various dynamic 3D vision tasks, including motion-in-depth, time-to-collision, and scene flow, often achieving significant improvement over the prior SOTA. Code will be available at https://github.com/HanLingsgjk/TPCV.

Poster
Hyunyoung Jung · Zhuo Hui · Lei Luo · Haitao Yang · Feng Liu · Sungjoo Yoo · Rakesh Ranjan · Denis Demandolx

[ West Building Exhibit Halls ABC ]

To apply optical flow in practice, it is often necessary to resize the input to smaller dimensions in order to reduce computational costs. However, downsizing inputs makes the estimation more challenging because objects and motion ranges become smaller. Even though recent approaches have demonstrated high-quality flow estimation, they tend to fail to accurately model small objects and precise boundaries when the input resolution is lowered, restricting their applicability to high-resolution inputs. In this paper, we introduce AnyFlow, a robust network that estimates accurate flow from images of various resolutions. By representing optical flow as a continuous coordinate-based representation, AnyFlow generates outputs at arbitrary scales from low-resolution inputs, demonstrating superior performance over prior works in capturing tiny objects with detail preservation on a wide range of scenes. We establish a new state-of-the-art performance of cross-dataset generalization on the KITTI dataset, while achieving comparable accuracy on the online benchmarks to other SOTA methods.

Poster
Mohammad Amin Shabani · Sepidehsadat Hosseini · Yasutaka Furukawa

[ West Building Exhibit Halls ABC ]

The paper presents a novel approach for vector-floorplan generation via a diffusion model, which denoises 2D coordinates of room/door corners with two inference objectives: 1) a single-step noise as the continuous quantity to precisely invert the continuous forward process; and 2) the final 2D coordinate as the discrete quantity to establish geometric incident relationships such as parallelism, orthogonality, and corner-sharing. Our task is graph-conditioned floorplan generation, a common workflow in floorplan design. We represent a floorplan as 1D polygonal loops, each of which corresponds to a room or a door. Our diffusion model employs a Transformer architecture at the core, which controls the attention masks based on the input graph-constraint and directly generates vector-graphics floorplans via a discrete and continuous denoising process. We have evaluated our approach on RPLAN dataset. The proposed approach makes significant improvements in all the metrics against the state-of-the-art with significant margins, while being capable of generating non-Manhattan structures and controlling the exact number of corners per room. We will share all our code and models.

Poster
Abdul Hannan Khan · Mohammed Shariq Nawaz · Andreas Dengel

[ West Building Exhibit Halls ABC ]

Autonomous driving systems rely heavily on the underlying perception module which needs to be both performant and efficient to allow precise decisions in real-time. Avoiding collisions with pedestrians is of topmost priority in any autonomous driving system. Therefore, pedestrian detection is one of the core parts of such systems’ perception modules. Current state-of-the-art pedestrian detectors have two major issues. Firstly, they have long inference times which affect the efficiency of the whole perception module, and secondly, their performance in the case of small and heavily occluded pedestrians is poor. We propose Localized Semantic Feature Mixers (LSFM), a novel, anchor-free pedestrian detection architecture. It uses our novel Super Pixel Pyramid Pooling module instead of the, computationally costly, Feature Pyramid Networks for feature encoding. Moreover, our MLPMixer-based Dense Focal Detection Network is used as a light detection head, reducing computational effort and inference time compared to existing approaches. To boost the performance of the proposed architecture, we adapt and use mixup augmentation which improves the performance, especially in small and heavily occluded cases. We benchmark LSFM against the state-of-the-art on well-established traffic scene pedestrian datasets. The proposed LSFM achieves state-of-the-art performance in Caltech, City Persons, Euro City Persons, and TJU-Traffic-Pedestrian datasets while …

Poster
Haibao Yu · Wenxian Yang · Hongzhi Ruan · Zhenwei Yang · Yingjuan Tang · Xu Gao · Xin Hao · Yifeng Shi · Yifeng Pan · Ning Sun · Juan Song · Jirui Yuan · Ping Luo · Zaiqing Nie

[ West Building Exhibit Halls ABC ]

Utilizing infrastructure and vehicle-side information to track and forecast the behaviors of surrounding traffic participants can significantly improve decision-making and safety in autonomous driving. However, the lack of real-world sequential datasets limits research in this area. To address this issue, we introduce V2X-Seq, the first large-scale sequential V2X dataset, which includes data frames, trajectories, vector maps, and traffic lights captured from natural scenery. V2X-Seq comprises two parts: the sequential perception dataset, which includes more than 15,000 frames captured from 95 scenarios, and the trajectory forecasting dataset, which contains about 80,000 infrastructure-view scenarios, 80,000 vehicle-view scenarios, and 50,000 cooperative-view scenarios captured from 28 intersections’ areas, covering 672 hours of data. Based on V2X-Seq, we introduce three new tasks for vehicle-infrastructure cooperative (VIC) autonomous driving: VIC3D Tracking, Online-VIC Forecasting, and Offline-VIC Forecasting. We also provide benchmarks for the introduced tasks. Find data, code, and more up-to-date information at https://github.com/AIR-THU/DAIR-V2X-Seq.

Poster
Junru Gu · Chenxu Hu · Tianyuan Zhang · Xuanyao Chen · Yilun Wang · Yue Wang · Hang Zhao

[ West Building Exhibit Halls ABC ]

Perception and prediction are two separate modules in the existing autonomous driving systems. They interact with each other via hand-picked features such as agent bounding boxes and trajectories. Due to this separation, prediction, as a downstream module, only receives limited information from the perception module. To make matters worse, errors from the perception modules can propagate and accumulate, adversely affecting the prediction results. In this work, we propose ViP3D, a query-based visual trajectory prediction pipeline that exploits rich information from raw videos to directly predict future trajectories of agents in a scene. ViP3D employs sparse agent queries to detect, track, and predict throughout the pipeline, making it the first fully differentiable vision-based trajectory prediction approach. Instead of using historical feature maps and trajectories, useful information from previous timestamps is encoded in agent queries, which makes ViP3D a concise streaming prediction method. Furthermore, extensive experimental results on the nuScenes dataset show the strong vision-based prediction performance of ViP3D over traditional pipelines and previous end-to-end models.

Poster
Dekai Zhu · Guangyao Zhai · Yan Di · Fabian Manhardt · Hendrik Berkemeyer · Tuan Tran · Nassir Navab · Federico Tombari · Benjamin Busam

[ West Building Exhibit Halls ABC ]

Reliable multi-agent trajectory prediction is crucial for the safe planning and control of autonomous systems. Compared with single-agent cases, the major challenge in simultaneously processing multiple agents lies in modeling complex social interactions caused by various driving intentions and road conditions. Previous methods typically leverage graph-based message propagation or attention mechanism to encapsulate such interactions in the format of marginal probabilistic distributions. However, it is inherently sub-optimal. In this paper, we propose IPCC-TP, a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling. IPCC-TP learns pairwise joint Gaussian Distributions through the tightly-coupled estimation of the means and covariances according to interactive incremental movements. Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders. Extensive experiments on nuScenes and Argoverse 2 datasets demonstrate that IPCC-TP improves the performance of baselines by a large margin.

Poster
Weibo Mao · Chenxin Xu · Qi Zhu · Siheng Chen · Yanfeng Wang

[ West Building Exhibit Halls ABC ]

To model the indeterminacy of human behaviors, stochastic trajectory prediction requires a sophisticated multi-modal distribution of future trajectories. Emerging diffusion models have revealed their tremendous representation capacities in numerous generation tasks, showing potential for stochastic trajectory prediction. However, expensive time consumption prevents diffusion models from real-time prediction, since a large number of denoising steps are required to assure sufficient representation ability. To resolve the dilemma, we present LEapfrog Diffusion model (LED), a novel diffusion-based trajectory prediction model, which provides real-time, precise, and diverse predictions. The core of the proposed LED is to leverage a trainable leapfrog initializer to directly learn an expressive multi-modal distribution of future trajectories, which skips a large number of denoising steps, significantly accelerating inference speed. Moreover, the leapfrog initializer is trained to appropriately allocate correlated samples to provide a diversity of predicted future trajectories, significantly improving prediction performances. Extensive experiments on four real-world datasets, including NBA/NFL/SDD/ETH-UCY, show that LED consistently improves performance and achieves 23.7%/21.9% ADE/FDE improvement on NFL. The proposed LED also speeds up the inference 19.3/30.8/24.3/25.1 times compared to the standard diffusion model on NBA/NFL/SDD/ETH-UCY, satisfying real-time inference needs. Code is available at https://github.com/MediaBrain-SJTU/LED.

Poster
Xiaoning Sun · Huaijiang Sun · Bin Li · Dong Wei · Weiqing Li · Jianfeng Lu

[ West Building Exhibit Halls ABC ]

Let us rethink the real-world scenarios that require human motion prediction techniques, such as human-robot collaboration. Current works simplify the task of predicting human motions into a one-off process of forecasting a short future sequence (usually no longer than 1 second) based on a historical observed one. However, such simplification may fail to meet practical needs due to the neglect of the fact that motion prediction in real applications is not an isolated “observe then predict” unit, but a consecutive process composed of many rounds of such unit, semi-overlapped along the entire sequence. As time goes on, the predicted part of previous round has its corresponding ground truth observable in the new round, but their deviation in-between is neither exploited nor able to be captured by existing isolated learning fashion. In this paper, we propose DeFeeNet, a simple yet effective network that can be added on existing one-off prediction models to realize deviation perception and feedback when applied to consecutive motion prediction task. At each prediction round, the deviation generated by previous unit is first encoded by our DeFeeNet, and then incorporated into the existing predictor to enable a deviation-aware prediction manner, which, for the first time, allows for information …

Poster
Zhehan Kan · Shuoshuo Chen · Ce Zhang · Yushun Tang · Zhihai He

[ West Building Exhibit Halls ABC ]

A central challenge in human pose estimation, as well as in many other machine learning and prediction tasks, is the generalization problem. The learned network does not have the capability to characterize the prediction error, generate feedback information from the test sample, and correct the prediction error on the fly for each individual test sample, which results in degraded performance in generalization. In this work, we introduce a self-correctable and adaptable inference (SCAI) method to address the generalization challenge of network prediction and use human pose estimation as an example to demonstrate its effectiveness and performance. We learn a correction network to correct the prediction result conditioned by a fitness feedback error. This feedback error is generated by a learned fitness feedback network which maps the prediction result to the original input domain and compares it against the original input. Interestingly, we find that this self-referential feedback error is highly correlated with the actual prediction error. This strong correlation suggests that we can use this error as feedback to guide the correction process. It can be also used as a loss function to quickly adapt and optimize the correction network during the inference process. Our extensive experimental results on human …

Poster
Shiwei Jin · Zhen Wang · Lei Wang · Ning Bi · Truong Nguyen

[ West Building Exhibit Halls ABC ]

Learning-based gaze estimation methods require large amounts of training data with accurate gaze annotations. Facing such demanding requirements of gaze data collection and annotation, several image synthesis methods were proposed, which successfully redirected gaze directions precisely given the assigned conditions. However, these methods focused on changing gaze directions of the images that only include eyes or restricted ranges of faces with low resolution (less than 128128) to largely reduce interference from other attributes such as hairs, which limits application scenarios. To cope with this limitation, we proposed a portable network, called ReDirTrans, achieving latent-to-latent translation for redirecting gaze directions and head orientations in an interpretable manner. ReDirTrans projects input latent vectors into aimed-attribute embeddings only and redirects these embeddings with assigned pitch and yaw values. Then both the initial and edited embeddings are projected back (deprojected) to the initial latent space as residuals to modify the input latent vectors by subtraction and addition, representing old status removal and new status addition. The projection of aimed attributes only and subtraction-addition operations for status replacement essentially mitigate impacts on other attributes and the distribution of latent vectors. Thus, by combining ReDirTrans with a pretrained fixed e4e-StyleGAN pair, we created ReDirTrans-GAN, which …

Poster
Zhou Huang · Hang Dai · Tian-Zhu Xiang · Shuo Wang · Huai-Xin Chen · Jie Qin · Huan Xiong

[ West Building Exhibit Halls ABC ]

Vision transformers have recently shown strong global context modeling capabilities in camouflaged object detection. However, they suffer from two major limitations: less effective locality modeling and insufficient feature aggregation in decoders, which are not conducive to camouflaged object detection that explores subtle cues from indistinguishable backgrounds. To address these issues, in this paper, we propose a novel transformer-based Feature Shrinkage Pyramid Network (FSPNet), which aims to hierarchically decode locality-enhanced neighboring transformer features through progressive shrinking for camouflaged object detection. Specifically, we propose a non-local token enhancement module (NL-TEM) that employs the non-local mechanism to interact neighboring tokens and explore graph-based high-order relations within tokens to enhance local representations of transformers. Moreover, we design a feature shrinkage decoder (FSD) with adjacent interaction modules (AIM), which progressively aggregates adjacent transformer features through a layer-by-layer shrinkage pyramid to accumulate imperceptible but effective cues as much as possible for object information decoding. Extensive quantitative and qualitative experiments demonstrate that the proposed model significantly outperforms the existing 24 competitors on three challenging COD benchmark datasets under six widely-used evaluation metrics. Our code is publicly available at https://github.com/ZhouHuang23/FSPNet.

Poster
Siyuan Li · Tobias Fischer · Lei Ke · Henghui Ding · Martin Danelljan · Fisher Yu

[ West Building Exhibit Halls ABC ]

The ability to recognize, localize and track dynamic objects in a scene is fundamental to many real-world applications, such as self-driving and robotic systems. Yet, traditional multiple object tracking (MOT) benchmarks rely only on a few object categories that hardly represent the multitude of possible objects that are encountered in the real world. This leaves contemporary MOT methods limited to a small set of pre-defined object categories. In this paper, we address this limitation by tackling a novel task, open-vocabulary MOT, that aims to evaluate tracking beyond pre-defined training categories. We further develop OVTrack, an open-vocabulary tracker that is capable of tracking arbitrary object classes. Its design is based on two key ingredients: First, leveraging vision-language models for both classification and association via knowledge distillation; second, a data hallucination strategy for robust appearance feature learning from denoising diffusion probabilistic models. The result is an extremely data-efficient open-vocabulary tracker that sets a new state-of-the-art on the large-scale, large-vocabulary TAO benchmark, while being trained solely on static images. The project page is at https://www.vis.xyz/pub/ovtrack/.

Poster
Huanzhang Dou · Pengyi Zhang · Wei Su · Yunlong Yu · Yining Lin · Xi Li

[ West Building Exhibit Halls ABC ]

Gait is one of the most promising biometrics that aims to identify pedestrians from their walking patterns. However, prevailing methods are susceptible to confounders, resulting in the networks hardly focusing on the regions that reflect effective walking patterns. To address this fundamental problem in gait recognition, we propose a Generative Counterfactual Intervention framework, dubbed GaitGCI, consisting of Counterfactual Intervention Learning (CIL) and Diversity-Constrained Dynamic Convolution (DCDC). CIL leverages causal inference to alleviate the impact of confounders by maximizing the likelihood difference between factual/counterfactual attention. DCDC adaptively generates sample-wise factual/counterfactual attention to perceive the sample properties. With matrix decomposition and diversity constraint, DCDC guarantees the model’s efficiency and effectiveness. Extensive experiments indicate that proposed GaitGCI: 1) could effectively focus on the discriminative and interpretable regions that reflect gait patterns; 2) is model-agnostic and could be plugged into existing models to improve performance with nearly no extra cost; 3) efficiently achieves state-of-the-art performance on arbitrary scenarios (in-the-lab and in-the-wild).

Poster
Dimitrios Kollias

[ West Building Exhibit Halls ABC ]

Research in automatic analysis of facial expressions mainly focuses on recognising the seven basic ones. However, compound expressions are more diverse and represent the complexity and subtlety of our daily affective displays more accurately. Limited research has been conducted for compound expression recognition (CER), because only a few databases exist, which are small, lab controlled, imbalanced and static. In this paper we present an in-the-wild A/V database, C-EXPR-DB, consisting of 400 videos of 200K frames, annotated in terms of 13 compound expressions, valence-arousal emotion descriptors, action units, speech, facial landmarks and attributes. We also propose C-EXPR-NET, a multi-task learning (MTL) method for CER and AU detection (AU-D); the latter task is introduced to enhance CER performance. For AU-D we incorporate AU semantic description along with visual information. For CER we use a multi-label formulation and the KL-divergence loss. We also propose a distribution matching loss for coupling CER and AU-D tasks to boost their performance and alleviate negative transfer (i.e., when MT model’s performance is worse than that of at least one single-task model). An extensive experimental study has been conducted illustrating the excellent performance of C-EXPR-NET, validating the theoretical claims. Finally, C-EXPR-NET is shown to effectively generalize its knowledge …

Poster
Lianxin Xie · Wen Xue · Zhen Xu · Si Wu · Zhiwen Yu · Hau San Wong

[ West Building Exhibit Halls ABC ]

Face retouching aims to remove facial blemishes, while at the same time maintaining the textual details of a given input image. The main challenge lies in distinguishing blemishes from the facial characteristics, such as moles. Training an image-to-image translation network with pixel-wise supervision suffers from the problem of expensive paired training data, since professional retouching needs specialized experience and is time-consuming. In this paper, we propose a Blemish-aware and Progressive Face Retouching model, which is referred to as BPFRe. Our framework can be partitioned into two manageable stages to perform progressive blemish removal. Specifically, an encoder-decoder-based module learns to coarsely remove the blemishes at the first stage, and the resulting intermediate features are injected into a generator to enrich local detail at the second stage. We find that explicitly suppressing the blemishes can contribute to an effective collaboration among the components. Toward this end, we incorporate an attention module, which learns to infer a blemish-aware map and further determine the corresponding weights, which are then used to refine the intermediate features transferred from the encoder to the decoder, and from the decoder to the generator. Therefore, BPFRe is able to deliver significant performance gains on a wide range of face …

Poster
Yue Gao · Yuan Zhou · Jinglu Wang · Xiao Li · Xiang Ming · Yan Lu

[ West Building Exhibit Halls ABC ]

Talking head generation is to generate video based on a given source identity and target motion. However, current methods face several challenges that limit the quality and controllability of the generated videos. First, the generated face often has unexpected deformation and severe distortions. Second, the driving image does not explicitly disentangle movement-relevant information, such as poses and expressions, which restricts the manipulation of different attributes during generation. Third, the generated videos tend to have flickering artifacts due to the inconsistency of the extracted landmarks between adjacent frames. In this paper, we propose a novel model that produces high-fidelity talking head videos with free control over head pose and expression. Our method leverages both self-supervised learned landmarks and 3D face model-based landmarks to model the motion. We also introduce a novel motion-aware multi-scale feature alignment module to effectively transfer the motion without face distortion. Furthermore, we enhance the smoothness of the synthesized talking head videos with a feature context adaptation and propagation module. We evaluate our model on challenging datasets and demonstrate its state-of-the-art performance. More information is available at https://yuegao.me/PECHead.

Poster
Lei Wang · Piotr Koniusz

[ West Building Exhibit Halls ABC ]

Many skeletal action recognition models use GCNs to represent the human body by 3D body joints connected body parts. GCNs aggregate one- or few-hop graph neighbourhoods, and ignore the dependency between not linked body joints. We propose to form hypergraph to model hyper-edges between graph nodes (e.g., third- and fourth-order hyper-edges capture three and four nodes) which help capture higher-order motion patterns of groups of body joints. We split action sequences into temporal blocks, Higher-order Transformer (HoT) produces embeddings of each temporal block based on (i) the body joints, (ii) pairwise links of body joints and (iii) higher-order hyper-edges of skeleton body joints. We combine such HoT embeddings of hyper-edges of orders 1, ..., r by a novel Multi-order Multi-mode Transformer (3Mformer) with two modules whose order can be exchanged to achieve coupled-mode attention on coupled-mode tokens based on ‘channel-temporal block’, ‘order-channel-body joint’, ‘channel-hyper-edge (any order)’ and ‘channel-only’ pairs. The first module, called Multi-order Pooling (MP), additionally learns weighted aggregation along the hyper-edge mode, whereas the second module, Temporal block Pooling (TP), aggregates along the temporal block mode. Our end-to-end trainable network yields state-of-the-art results compared to GCN-, transformer- and hypergraph-based counterparts.

Poster
Zixiang Zhou · Baoyuan Wang

[ West Building Exhibit Halls ABC ]

Generating controllable and editable human motion sequences is a key challenge in 3D Avatar generation. It has been labor-intensive to generate and animate human motion for a long time until learning-based approaches have been developed and applied recently. However, these approaches are still task-specific or modality-specific. In this paper, we propose “UDE”, the first unified driving engine that enables generating human motion sequences from natural language or audio sequences (see Fig. 1). Specifically, UDE consists of the following key components: 1) a motion quantization module based on VQVAE that represents continuous motion sequence as discrete latent code, 2) a modality-agnostic transformer encoder that learns to map modality-aware driving signals to a joint space, and 3) a unified token transformer (GPT-like) network to predict the quantized latent code index in an auto-regressive manner. 4) a diffusion motion decoder that takes as input the motion tokens and decodes them into motion sequences with high diversity. We evaluate our method on HumanML3D and AIST++ benchmarks, and the experiment results demonstrate our method achieves state-of-the-art performance.

Poster
Nico Messikommer · Carter Fang · Mathias Gehrig · Davide Scaramuzza

[ West Building Exhibit Halls ABC ]

Because of their high temporal resolution, increased resilience to motion blur, and very sparse output, event cameras have been shown to be ideal for low-latency and low-bandwidth feature tracking, even in challenging scenarios. Existing feature tracking methods for event cameras are either handcrafted or derived from first principles but require extensive parameter tuning, are sensitive to noise, and do not generalize to different scenarios due to unmodeled effects. To tackle these deficiencies, we introduce the first data-driven feature tracker for event cameras, which leverages low-latency events to track features detected in a grayscale frame. We achieve robust performance via a novel frame attention module, which shares information across feature tracks. By directly transferring zero-shot from synthetic to real data, our data-driven tracker outperforms existing approaches in relative feature age by up to 120% while also achieving the lowest latency. This performance gap is further increased to 130% by adapting our tracker to real data with a novel self-supervision strategy.

Poster
Xiaoqian Shen · Xiang Li · Mohamed Elhoseiny

[ West Building Exhibit Halls ABC ]

Video generation remains a challenging task due to spatiotemporal complexity and the requirement of synthesizing diverse motions with temporal consistency. Previous works attempt to generate videos in arbitrary lengths either in an autoregressive manner or regarding time as a continuous signal. However, they struggle to synthesize detailed and diverse motions with temporal coherence and tend to generate repetitive scenes after a few time steps. In this work, we argue that a single time-agnostic latent vector of style-based generator is insufficient to model various and temporally-consistent motions. Hence, we introduce additional time-dependent motion styles to model diverse motion patterns. In addition, a Motion Style Attention modulation mechanism, dubbed as MoStAtt, is proposed to augment frames with vivid dynamics for each specific scale (i.e., layer), which assigns attention score for each motion style w.r.t deconvolution filter weights in the target synthesis layer and softly attends different motion styles for weight modulation. Experimental results show our model achieves state-of-the-art performance on four unconditional 256^2 video synthesis benchmarks trained with only 3 frames per clip and produces better qualitative results with respect to dynamic motions. Code and videos have been made available at https://github.com/xiaoqian-shen/MoStGAN-V.

Poster
Boyang Zhang · Kehua Ma · Suping Wu · Zhixiang Yuan

[ West Building Exhibit Halls ABC ]

Recovering 3D human mesh from videos has recently made significant progress. However, most of the existing methods focus on the temporal consistency of videos, while ignoring the spatial representation in complex scenes, thus failing to recover a reasonable and smooth human mesh sequence under extreme illumination and chaotic backgrounds.To alleviate this problem, we propose a two-stage co-segmentation network based on discriminative representation for recovering human body meshes from videos. Specifically, the first stage of the network segments the video spatial domain to spotlight spatially fine-grained information, and then learns and enhances the intra-frame discriminative representation through a dual-excitation mechanism and a frequency domain enhancement module, while suppressing irrelevant information (e.g., background). The second stage focuses on temporal context by segmenting the video temporal domain, and models inter-frame discriminative representation via a dynamic integration strategy.Further, to efficiently generate reasonable human discriminative actions, we carefully elaborate a landmark anchor area loss to constrain the variation of the human motion area. Extensive experimental results on large publicly available datasets indicate the superiority in comparison with most state-of-the-art. Code will be made public.

Poster
Bin Fan · Yuxin Mao · Mochu Xiang · Zhexiong Wan · Qi Liu

[ West Building Exhibit Halls ABC ]

Rolling shutter correction (RSC) is becoming increasingly popular for RS cameras that are widely used in commercial and industrial applications. Despite the promising performance, existing RSC methods typically employ a two-stage network structure that ignores intrinsic information interactions and hinders fast inference. In this paper, we propose a single-stage encoder-decoder-based network, named JAMNet, for efficient RSC. It first extracts pyramid features from consecutive RS inputs, and then simultaneously refines the two complementary information (i.e., global shutter appearance and undistortion motion field) to achieve mutual promotion in a joint learning decoder. To inject sufficient motion cues for guiding joint learning, we introduce a transformer-based motion embedding module and propose to pass hidden states across pyramid levels. Moreover, we present a new data augmentation strategy “vertical flip + inverse order” to release the potential of the RSC datasets. Experiments on various benchmarks show that our approach surpasses the state-of-the-art methods by a large margin, especially with a 4.7 dB PSNR leap on real-world RSC. Code is available at https://github.com/GitCVfb/JAMNet.

Poster
Guozhen Zhang · Yuhan Zhu · Haonan Wang · Youxin Chen · Gangshan Wu · Limin Wang

[ West Building Exhibit Halls ABC ]

Effectively extracting inter-frame motion and appearance information is important for video frame interpolation (VFI). Previous works either extract both types of information in a mixed way or devise separate modules for each type of information, which lead to representation ambiguity and low efficiency. In this paper, we propose a new module to explicitly extract motion and appearance information via a unified operation. Specifically, we rethink the information process in inter-frame attention and reuse its attention map for both appearance feature enhancement and motion information extraction. Furthermore, for efficient VFI, our proposed module could be seamlessly integrated into a hybrid CNN and Transformer architecture. This hybrid pipeline can alleviate the computational complexity of inter-frame attention as well as preserve detailed low-level structure information. Experimental results demonstrate that, for both fixed- and arbitrary-timestep interpolation, our method achieves state-of-the-art performance on various datasets. Meanwhile, our approach enjoys a lighter computation overhead over models with close performance. The source code and models are available at https://github.com/MCG-NJU/EMA-VFI.

Poster
Zhiliang Wu · Changchang Sun · Hanyu Xuan · Yan Yan

[ West Building Exhibit Halls ABC ]

Stereo video inpainting aims to fill the missing regions on the left and right views of the stereo video with plausible content simultaneously. Compared with the single video inpainting that has achieved promising results using deep convolutional neural networks, inpainting the missing regions of stereo video has not been thoroughly explored. In essence, apart from the spatial and temporal consistency that single video inpainting needs to achieve, another key challenge for stereo video inpainting is to maintain the stereo consistency between left and right views and hence alleviate the 3D fatigue for viewers. In this paper, we propose a novel deep stereo video inpainting network named SVINet, which is the first attempt for stereo video inpainting task utilizing deep convolutional neural networks. SVINet first utilizes a self-supervised flow-guided deformable temporal alignment module to align the features on the left and right view branches, respectively. Then, the aligned features are fed into a shared adaptive feature aggregation module to generate missing contents of their respective branches. Finally, the parallax attention module (PAM) that uses the cross-view information to consider the significant stereo correlation is introduced to fuse the completed features of left and right views. Furthermore, we develop a stereo consistency …

Poster
Akshay Dudhane · Syed Waqas Zamir · Salman Khan · Fahad Shahbaz Khan · Ming-Hsuan Yang

[ West Building Exhibit Halls ABC ]

On a shutter press, modern handheld cameras capture multiple images in rapid succession and merge them to generate a single image. However, individual frames in a burst are misaligned due to inevitable motions and contain multiple degradations. The challenge is to properly align the successive image shots and merge their complimentary information to achieve high-quality outputs. Towards this direction, we propose Burstormer: a novel transformer-based architecture for burst image restoration and enhancement. In comparison to existing works, our approach exploits multi-scale local and non-local features to achieve improved alignment and feature fusion. Our key idea is to enable inter-frame communication in the burst neighborhoods for information aggregation and progressive fusion while modeling the burst-wide context. However, the input burst frames need to be properly aligned before fusing their information. Therefore, we propose an enhanced deformable alignment module for aligning burst features with regards to the reference frame. Unlike existing methods, the proposed alignment module not only aligns burst features but also exchanges feature information and maintains focused communication with the reference frame through the proposed reference-based feature enrichment mechanism, which facilitates handling complex motions. After multi-level alignment and enrichment, we re-emphasize on inter-frame communication within burst using a cyclic burst …

Poster
Zhihang Zhong · Mingdeng Cao · Xiang Ji · Yinqiang Zheng · Zhihang Zhong

[ West Building Exhibit Halls ABC ]

This paper studies the challenging problem of recovering motion from blur, also known as joint deblurring and interpolation or blur temporal super-resolution. The challenges are twofold: 1) the current methods still leave considerable room for improvement in terms of visual quality even on the synthetic dataset, and 2) poor generalization to real-world data. To this end, we propose a blur interpolation transformer (BiT) to effectively unravel the underlying temporal correlation encoded in blur. Based on multi-scale residual Swin transformer blocks, we introduce dual-end temporal supervision and temporally symmetric ensembling strategies to generate effective features for time-varying motion rendering. In addition, we design a hybrid camera system to collect the first real-world dataset of one-to-many blur-sharp video pairs. Experimental results show that BiT has a significant gain over the state-of-the-art methods on the public dataset Adobe240. Besides, the proposed real-world dataset effectively helps the model generalize well to real blurry scenarios. Code and data are available at https://github.com/zzh-tech/BiT.

Poster
Yiheng Chi · Xingguang Zhang · Stanley H. Chan

[ West Building Exhibit Halls ABC ]

While today’s high dynamic range (HDR) image fusion algorithms are capable of blending multiple exposures, the acquisition is often controlled so that the dynamic range within one exposure is narrow. For HDR imaging in photon-limited situations, the dynamic range can be enormous and the noise within one exposure is spatially varying. Existing image denoising algorithms and HDR fusion algorithms both fail to handle this situation, leading to severe limitations in low-light HDR imaging. This paper presents two contributions. Firstly, we identify the source of the problem. We find that the issue is associated with the co-existence of (1) spatially varying signal-to-noise ratio, especially the excessive noise due to very dark regions, and (2) a wide luminance range within each exposure. We show that while the issue can be handled by a bank of denoisers, the complexity is high. Secondly, we propose a new method called the spatially varying high dynamic range (SV-HDR) fusion network to simultaneously denoise and fuse images. We introduce a new exposure-shared block within our custom-designed multi-scale transformer framework. In a variety of testing conditions, the performance of the proposed SV-HDR is better than the existing methods.

Poster
Yusaku Yoshida · Ryo Kawahara · Takahiro Okabe

[ West Building Exhibit Halls ABC ]

Artificial light sources are often powered by an electric grid, and then their intensities rapidly oscillate in response to the grid’s alternating current (AC). Interestingly, the flickers of scene radiance values due to AC illumination are useful for extracting rich information on a scene of interest. In this paper, we show that the flickers due to AC illumination is useful for intrinsic image decomposition (IID). Our proposed method conducts the light source separation (LSS) followed by the IID under AC illumination. In particular, we reveal the ambiguity in the blind LSS via matrix factorization and the ambiguity in the IID assuming the Lambert model, and then show why and how those ambiguities can be resolved. We experimentally confirmed that our method can recover the colors of the light sources, the diffuse reflectance values, and the diffuse and specular intensities (shadings) under each of the light sources, and that the IID under AC illumination is effective for application to auto white balancing.

Poster
Yue Cao · Ming Liu · Shuai Liu · Xiaotao Wang · Lei Lei · Wangmeng Zuo

[ West Building Exhibit Halls ABC ]

Although deep neural networks have achieved astonishing performance in many vision tasks, existing learning-based methods are far inferior to the physical model-based solutions in extreme low-light sensor noise modeling. To tap the potential of learning-based sensor noise modeling, we investigate the noise formation in a typical imaging process and propose a novel physics-guided ISO-dependent sensor noise modeling approach. Specifically, we build a normalizing flow-based framework to represent the complex noise characteristics of CMOS camera sensors. Each component of the noise model is dedicated to a particular kind of noise under the guidance of physical models. Moreover, we take into consideration of the ISO dependence in the noise model, which is not completely considered by the existing learning-based methods. For training the proposed noise model, a new dataset is further collected with paired noisy-clean images, as well as flat-field and bias frames covering a wide range of ISO settings. Compared to existing methods, the proposed noise model benefits from the flexible structure and accurate modeling capabilities, which can help achieve better denoising performance in extreme low-light scenes. The source code and collected dataset will be publicly available.

Poster
Yuhui Quan · Zicong Wu · Hui Ji

[ West Building Exhibit Halls ABC ]

Single image defocus deblurring (SIDD) refers to recovering an all-in-focus image from a defocused blurry one. It is a challenging recovery task due to the spatially-varying defocus blurring effects with significant size variation. Motivated by the strong correlation among defocus kernels of different sizes and the blob-type structure of defocus kernels, we propose a learnable recursive kernel representation (RKR) for defocus kernels that expresses a defocus kernel by a linear combination of recursive, separable and positive atom kernels, leading to a compact yet effective and physics-encoded parametrization of the spatially-varying defocus blurring process. Afterwards, a physics-driven and efficient deep model with a cross-scale fusion structure is presented for SIDD, with inspirations from the truncated Neumann series for approximating the matrix inversion of the RKR-based blurring operator. In addition, a reblurring loss is proposed to regularize the RKR learning. Extensive experiments show that, our proposed approach significantly outperforms existing ones, with a model size comparable to that of the top methods.

Poster
Carlos Rodriguez-Pardo · Henar Domínguez-Elvira · David Pascual-Hernández · Elena Garces

[ West Building Exhibit Halls ABC ]

We propose a learning-based method to recover normals, specularity, and roughness from a single diffuse image of a material, using microgeometry appearance as our primary cue. Previous methods that work on single images tend to produce over-smooth outputs with artifacts, operate at limited resolution, or train one model per class with little room for generalization. In contrast, in this work, we propose a novel capture approach that leverages a generative network with attention and a U-Net discriminator, which shows outstanding performance integrating global information at reduced computational complexity. We showcase the performance of our method with a real dataset of digitized textile materials and show that a commodity flatbed scanner can produce the type of diffuse illumination required as input to our method. Additionally, because the problem might be ill-posed --more than a single diffuse image might be needed to disambiguate the specular reflection-- or because the training dataset is not representative enough of the real distribution, we propose a novel framework to quantify the model’s confidence about its prediction at test time. Our method is the first one to deal with the problem of modeling uncertainty in material digitization, increasing the trustworthiness of the process and enabling more intelligent …

Poster
Qingsen Yan · Song Zhang · Weiye Chen · Hao Tang · Yu Zhu · Jinqiu Sun · Luc Van Gool · Yanning Zhang

[ West Building Exhibit Halls ABC ]

Generating a high-quality High Dynamic Range (HDR) image from dynamic scenes has recently been extensively studied by exploiting Deep Neural Networks (DNNs). Most DNNs-based methods require a large amount of training data with ground truth, requiring tedious and time-consuming work. Few-shot HDR imaging aims to generate satisfactory images with limited data. However, it is difficult for modern DNNs to avoid overfitting when trained on only a few images. In this work, we propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR. Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum, we first generate content of saturated regions with a self-supervised mechanism and then address ghosts via an iterative semi-supervised learning framework. Concretely, considering that saturated regions can be regarded as masking Low Dynamic Range (LDR) input regions, we design a Saturated Mask AutoEncoder (SMAE) to learn a robust feature representation and reconstruct a non-saturated HDR image. We also propose an adaptive pseudo-label selection strategy to pick high-quality HDR pseudo-labels in the second stage to avoid the effect of mislabeled samples. Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets, …

Poster
Yu Zheng · Jiahui Zhan · Shengfeng He · Junyu Dong · Yong Du

[ West Building Exhibit Halls ABC ]

Considering the ill-posed nature, contrastive regularization has been developed for single image dehazing, introducing the information from negative images as a lower bound. However, the contrastive samples are nonconsensual, as the negatives are usually represented distantly from the clear (i.e., positive) image, leaving the solution space still under-constricted. Moreover, the interpretability of deep dehazing models is underexplored towards the physics of the hazing process. In this paper, we propose a novel curricular contrastive regularization targeted at a consensual contrastive space as opposed to a non-consensual one. Our negatives, which provide better lower-bound constraints, can be assembled from 1) the hazy image, and 2) corresponding restorations by other existing methods. Further, due to the different similarities between the embeddings of the clear image and negatives, the learning difficulty of the multiple components is intrinsically imbalanced. To tackle this issue, we customize a curriculum learning strategy to reweight the importance of different negatives. In addition, to improve the interpretability in the feature space, we build a physics-aware dual-branch unit according to the atmospheric scattering model. With the unit, as well as curricular contrastive regularization, we establish our dehazing network, named C2PNet. Extensive experiments demonstrate that our C2PNet significantly outperforms state-of-the-art methods, with …

Poster
Gregory Vaksman · Michael Elad

[ West Building Exhibit Halls ABC ]

Supervised neural networks are known to achieve excellent results in various image restoration tasks. However, such training requires datasets composed of pairs of corrupted images and their corresponding ground truth targets. Unfortunately, such data is not available in many applications. For the task of image denoising in which the noise statistics is unknown, several self-supervised training methods have been proposed for overcoming this difficulty. Some of these require knowledge of the noise model, while others assume that the contaminating noise is uncorrelated, both assumptions are too limiting for many practical needs. This work proposes a novel self-supervised training technique suitable for the removal of unknown correlated noise. The proposed approach neither requires knowledge of the noise model nor access to ground truth targets. The input to our algorithm consists of easily captured bursts of noisy shots. Our algorithm constructs artificial patch-craft images from these bursts by patch matching and stitching, and the obtained crafted images are used as targets for the training. Our method does not require registration of the different images within the burst. We evaluate the proposed framework through extensive experiments with synthetic and real image noise.

Poster
Miaoyu Li · Ji Liu · Ying Fu · Yulun Zhang · Dejing Dou

[ West Building Exhibit Halls ABC ]

Denoising is a crucial step for hyperspectral image (HSI) applications. Though witnessing the great power of deep learning, existing HSI denoising methods suffer from limitations in capturing the non-local self-similarity. Transformers have shown potential in capturing long-range dependencies, but few attempts have been made with specifically designed Transformer to model the spatial and spectral correlation in HSIs. In this paper, we address these issues by proposing a spectral enhanced rectangle Transformer, driving it to explore the non-local spatial similarity and global spectral low-rank property of HSIs. For the former, we exploit the rectangle self-attention horizontally and vertically to capture the non-local similarity in the spatial domain. For the latter, we design a spectral enhancement module that is capable of extracting global underlying low-rank property of spatial-spectral cubes to suppress noise, while enabling the interactions among non-overlapping spatial rectangles. Extensive experiments have been conducted on both synthetic noisy HSIs and real noisy HSIs, showing the effectiveness of our proposed method in terms of both objective metric and subjective visual quality. The code is available at https://github.com/MyuLi/SERT.

Poster
Dongwon Park · Byung Hyun Lee · Se Young Chun

[ West Building Exhibit Halls ABC ]

Image restorations for single degradations have been widely studied, demonstrating excellent performance for each degradation, but can not reflect unpredictable realistic environments with unknown multiple degradations, which may change over time. To mitigate this issue, image restorations for known and unknown multiple degradations have recently been investigated, showing promising results, but require large networks or have sub-optimal architectures for potential interference among different degradations. Here, inspired by the filter attribution integrated gradients (FAIG), we propose an adaptive discriminative filter-based model for specific degradations (ADMS) to restore images with unknown degradations. Our method allows the network to contain degradation-dedicated filters only for about 3% of all network parameters per each degradation and to apply them adaptively via degradation classification (DC) to explicitly disentangle the network for multiple degradations. Our proposed method has demonstrated its effectiveness in comparison studies and achieved state-of-the-art performance in all-in-one image restoration benchmark datasets of both Rain-Noise-Blur and Rain-Snow-Haze.

Poster
Jinghao Zhang · Jie Huang · Mingde Yao · Zizheng Yang · Hu Yu · Man Zhou · Feng Zhao

[ West Building Exhibit Halls ABC ]

Learning to leverage the relationship among diverse image restoration tasks is quite beneficial for unraveling the intrinsic ingredients behind the degradation. Recent years have witnessed the flourish of various All-in-one methods, which handle multiple image degradations within a single model. In practice, however, few attempts have been made to excavate task correlations in that exploring the underlying fundamental ingredients of various image degradations, resulting in poor scalability as more tasks are involved. In this paper, we propose a novel perspective to delve into the degradation via an ingredients-oriented rather than previous task-oriented manner for scalable learning. Specifically, our method, named Ingredients-oriented Degradation Reformulation framework (IDR), consists of two stages, namely task-oriented knowledge collection and ingredients-oriented knowledge integration. In the first stage, we conduct ad hoc operations on different degradations according to the underlying physics principles, and establish the corresponding prior hubs for each type of degradation. While the second stage progressively reformulates the preceding task-oriented hubs into single ingredients-oriented hub via learnable Principal Component Analysis (PCA), and employs a dynamic routing mechanism for probabilistic unknown degradation removal. Extensive experiments on various image restoration tasks demonstrate the effectiveness and scalability of our method. More importantly, our IDR exhibits the favorable generalization …

Poster
Fadi Boutros · Meiling Fang · Marcel Klemt · Biying Fu · Naser Damer

[ West Building Exhibit Halls ABC ]

Face image quality assessment (FIQA) estimates the utility of the captured image in achieving reliable and accurate recognition performance. This work proposes a novel FIQA method, CR-FIQA, that estimates the face image quality of a sample by learning to predict its relative classifiability. This classifiability is measured based on the allocation of the training sample feature representation in angular space with respect to its class center and the nearest negative class center. We experimentally illustrate the correlation between the face image quality and the sample relative classifiability. As such property is only observable for the training dataset, we propose to learn this property by probing internal network observations during the training process and utilizing it to predict the quality of unseen samples. Through extensive evaluation experiments on eight benchmarks and four face recognition models, we demonstrate the superiority of our proposed CR-FIQA over state-of-the-art (SOTA) FIQA algorithms.

Poster
Avinab Saha · Sandeep Mishra · Alan C. Bovik

[ West Building Exhibit Halls ABC ]

Automatic Perceptual Image Quality Assessment is a challenging problem that impacts billions of internet, and social media users daily. To advance research in this field, we propose a Mixture of Experts approach to train two separate encoders to learn high-level content and low-level image quality features in an unsupervised setting. The unique novelty of our approach is its ability to generate low-level representations of image quality that are complementary to high-level features representing image content. We refer to the framework used to train the two encoders as Re-IQA. For Image Quality Assessment in the Wild, we deploy the complementary low and high-level image representations obtained from the Re-IQA framework to train a linear regression model, which is used to map the image representations to the ground truth quality scores, refer Figure 1. Our method achieves state-of-the-art performance on multiple large-scale image quality assessment databases containing both real and synthetic distortions, demonstrating how deep neural networks can be trained in an unsupervised setting to produce perceptually relevant representations. We conclude from our experiments that the low and high-level features obtained are indeed complementary and positively impact the performance of the linear regressor. A public release of all the codes associated with …

Poster
Zhijun Tu · Jie Hu · Hanting Chen · Yunhe Wang

[ West Building Exhibit Halls ABC ]

Model quantization is a crucial step for deploying super resolution (SR) networks on mobile devices. However, existing works focus on quantization-aware training, which requires complete dataset and expensive computational overhead. In this paper, we study post-training quantization(PTQ) for image super resolution using only a few unlabeled calibration images. As the SR model aims to maintain the texture and color information of input images, the distribution of activations are long-tailed, asymmetric and highly dynamic compared with classification models. To this end, we introduce the density-based dual clipping to cut off the outliers based on analyzing the asymmetric bounds of activations. Moreover, we present a novel pixel aware calibration method with the supervision of the full-precision model to accommodate the highly dynamic range of different samples. Extensive experiments demonstrate that the proposed method significantly outperforms existing PTQ algorithms on various models and datasets. For instance, we get a 2.091 dB increase on Urban100 benchmark when quantizing EDSR×4 to 4-bit with 100 unlabeled images. Our code is available at both https://github.com/huawei-noah/Efficient-Computing/tree/master/Quantization/PTQ4SR and https://gitee.com/mindspore/models/tree/master/research/cv/PTQ4SR.

Poster
Jiacheng Li · Chang Chen · Wei Huang · Zhiqiang Lang · Fenglong Song · Youliang Yan · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Image resampling is a basic technique that is widely employed in daily applications. Existing deep neural networks (DNNs) have made impressive progress in resampling performance. Yet these methods are still not the perfect substitute for interpolation, due to the issues of efficiency and continuous resampling. In this work, we propose a novel method of Learning Resampling Function (termed LeRF), which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption of interpolation methods. Specifically, LeRF assigns spatially-varying steerable resampling functions to input image pixels and learns to predict the hyper-parameters that determine the orientations of these resampling functions with a neural network. To achieve highly efficient inference, we adopt look-up tables (LUTs) to accelerate the inference of the learned neural network. Furthermore, we design a directional ensemble strategy and edge-sensitive indexing patterns to better capture local structures. Extensive experiments show that our method runs as fast as interpolation, generalizes well to arbitrary transformations, and outperforms interpolation significantly, e.g., up to 3dB PSNR gain over bicubic for ×2 upsampling on Manga109.

Poster
Woo Kyoung Han · Byeonghun Lee · Sang Hyun Park · Kyong Hwan Jin

[ West Building Exhibit Halls ABC ]

Modern displays and contents support more than 8bits image and video. However, bit-starving situations such as compression codecs make low bit-depth (LBD) images (<8bits), occurring banding and blurry artifacts. Previous bit depth expansion (BDE) methods still produce unsatisfactory high bit-depth (HBD) images. To this end, we propose an implicit neural function with a bit query to recover de-quantized images from arbitrarily quantized inputs. We develop a phasor estimator to exploit the information of the nearest pixels. Our method shows superior performance against prior BDE methods on natural and animation images. We also demonstrate our model on YouTube UGC datasets for de-banding. Our source code is available at https://github.com/WooKyoungHan/ABCD

Poster
Lingshun Kong · Jiangxin Dong · Jianjun Ge · Mingqiang Li · Jinshan Pan

[ West Building Exhibit Halls ABC ]

We present an effective and efficient method that explores the properties of Transformers in the frequency domain for high-quality image deblurring. Our method is motivated by the convolution theorem that the correlation or convolution of two signals in the spatial domain is equivalent to an element-wise product of them in the frequency domain. This inspires us to develop an efficient frequency domain-based self-attention solver (FSAS) to estimate the scaled dot-product attention by an element-wise product operation instead of the matrix multiplication in the spatial domain. In addition, we note that simply using the naive feed-forward network (FFN) in Transformers does not generate good deblurred results. To overcome this problem, we propose a simple yet effective discriminative frequency domain-based FFN (DFFN), where we introduce a gated mechanism in the FFN based on the Joint Photographic Experts Group (JPEG) compression algorithm to discriminatively determine which low- and high-frequency information of the features should be preserved for latent clear image restoration. We formulate the proposed FSAS and DFFN into an asymmetrical network based on an encoder and decoder architecture, where the FSAS is only used in the decoder module for better image deblurring. Experimental results show that the proposed method performs favorably against …

Poster
Xiang Chen · Hao Li · Mingqiang Li · Jinshan Pan

[ West Building Exhibit Halls ABC ]

Transformers-based methods have achieved significant performance in image deraining as they can model the non-local information which is vital for high-quality image reconstruction. In this paper, we find that most existing Transformers usually use all similarities of the tokens from the query-key pairs for the feature aggregation. However, if the tokens from the query are different from those of the key, the self-attention values estimated from these tokens also involve in feature aggregation, which accordingly interferes with the clear image restoration. To overcome this problem, we propose an effective DeRaining network, Sparse Transformer (DRSformer) that can adaptively keep the most useful self-attention values for feature aggregation so that the aggregated features better facilitate high-quality image reconstruction. Specifically, we develop a learnable top-k selection operator to adaptively retain the most crucial attention scores from the keys for each query for better feature aggregation. Simultaneously, as the naive feed-forward network in Transformers does not model the multi-scale information that is important for latent clear image restoration, we develop an effective mixed-scale feed-forward network to generate better features for image deraining. To learn an enriched set of hybrid features, which combines local context from CNN operators, we equip our model with mixture of …

Poster
Zixiang Zhao · Haowen Bai · Jiangshe Zhang · Yulun Zhang · Shuang Xu · Zudi Lin · Radu Timofte · Luc Van Gool

[ West Building Exhibit Halls ABC ]

Multi-modality (MM) image fusion aims to render fused images that maintain the merits of different modalities, e.g., functional highlight and detailed textures. To tackle the challenge in modeling cross-modality features and decomposing desirable modality-specific and modality-shared features, we propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network. Firstly, CDDFuse uses Restormer blocks to extract cross-modality shallow features. We then introduce a dual-branch Transformer-CNN feature extractor with Lite Transformer (LT) blocks leveraging long-range attention to handle low-frequency global features and Invertible Neural Networks (INN) blocks focusing on extracting high-frequency local information. A correlation-driven loss is further proposed to make the low-frequency features correlated while the high-frequency features uncorrelated based on the embedded information. Then, the LT-based global fusion and INN-based local fusion layers output the fused image. Extensive experiments demonstrate that our CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion. We also show that CDDFuse can boost the performance in downstream infrared-visible semantic segmentation and object detection in a unified benchmark. The code is available at https://github.com/Zhaozixiang1228/MMIF-CDDFuse.

Poster
Julian Jorge Andrade Guerreiro · Mitsuru Nakazawa · Björn Stenger

[ West Building Exhibit Halls ABC ]

In this paper, we present PCT-Net, a simple and general image harmonization method that can be easily applied to images at full resolution. The key idea is to learn a parameter network that uses downsampled input images to predict the parameters for pixel-wise color transforms (PCTs) which are applied to each pixel in the full-resolution image. We show that affine color transforms are both efficient and effective, resulting in state-of-the-art harmonization results. Moreover, we explore both CNNs and Transformers as the parameter network and show that Transformers lead to better results. We evaluate the proposed method on the public full-resolution iHarmony4 dataset, which is comprised of four datasets, and show a reduction of the foreground MSE (fMSE) and MSE values by more than 20% and an increase of the PSNR value by 1.4dB while keeping the architecture light-weight. In a user study with 20 people, we show that the method achieves a higher B-T score than two other recent methods.

Poster
Ke Wang · Michaël Gharbi · He Zhang · Zhihao Xia · Eli Shechtman

[ West Building Exhibit Halls ABC ]

Learning-based image harmonization techniques are usually trained to undo synthetic global transformations, applied to a masked foreground in a single ground truth photo. This simulated data does not model many important appearance mismatches (illumination, object boundaries, etc.) between foreground and background in real composites, leading to models that do not generalize well and cannot model complex local changes. We propose a new semi-supervised training strategy that addresses this problem and lets us learn complex local appearance harmonization from unpaired real composites, where foreground and background come from different images. Our model is fully parametric. It uses RGB curves to correct the global colors and tone and a shading map to model local variations. Our approach outperforms previous work on established benchmarks and real composites, as shown in a user study, and processes high-resolution images interactively. The code and project page is available at https://kewang0622.github.io/sprih/.

Poster
Chenfan Qu · Chongyu Liu · Yuliang Liu · Xinhong Chen · Dezhi Peng · Fengjun Guo · Lianwen Jin

[ West Building Exhibit Halls ABC ]

Recently, tampered text detection in document image has attracted increasingly attention due to its essential role on information security. However, detecting visually consistent tampered text in photographed document images is still a main challenge. In this paper, we propose a novel framework to capture more fine-grained clues in complex scenarios for tampered text detection, termed as Document Tampering Detector (DTD), which consists of a Frequency Perception Head (FPH) to compensate the deficiencies caused by the inconspicuous visual features, and a Multi-view Iterative Decoder (MID) for fully utilizing the information of features in different scales. In addition, we design a new training paradigm, termed as Curriculum Learning for Tampering Detection (CLTD), which can address the confusion during the training procedure and thus to improve the robustness for image compression and the ability to generalize. To further facilitate the tampered text detection in document images, we construct a large-scale document image dataset, termed as DocTamper, which contains 170,000 document images of various types. Experiments demonstrate that our proposed DTD outperforms previous state-of-the-art by 9.2%, 26.3% and 12.3% in terms of F-measure on the DocTamper testing set, and the cross-domain testing sets of DocTamper-FCD and DocTamper-SCD, respectively. Codes and dataset will be available …

Poster
Siyu Huang · Jie An · Donglai Wei · Jiebo Luo · Hanspeter Pfister

[ West Building Exhibit Halls ABC ]

The mechanism of existing style transfer algorithms is by minimizing a hybrid loss function to push the generated image toward high similarities in both content and style. However, this type of approach cannot guarantee visual fidelity, i.e., the generated artworks should be indistinguishable from real ones. In this paper, we devise a new style transfer framework called QuantArt for high visual-fidelity stylization. QuantArt pushes the latent representation of the generated artwork toward the centroids of the real artwork distribution with vector quantization. By fusing the quantized and continuous latent representations, QuantArt allows flexible control over the generated artworks in terms of content preservation, style similarity, and visual fidelity. Experiments on various style transfer settings show that our QuantArt framework achieves significantly higher visual fidelity compared with the existing style transfer methods.

Poster
Takehiro Aoshima · Takashi Matsubara

[ West Building Exhibit Halls ABC ]

Semantic editing of images is the fundamental goal of computer vision. Although deep learning methods, such as generative adversarial networks (GANs), are capable of producing high-quality images, they often do not have an inherent way of editing generated images semantically. Recent studies have investigated a way of manipulating the latent variable to determine the images to be generated. However, methods that assume linear semantic arithmetic have certain limitations in terms of the quality of image editing, whereas methods that discover nonlinear semantic pathways provide non-commutative editing, which is inconsistent when applied in different orders. This study proposes a novel method called deep curvilinear editing (DeCurvEd) to determine semantic commuting vector fields on the latent space. We theoretically demonstrate that owing to commutativity, the editing of multiple attributes depends only on the quantities and not on the order. Furthermore, we experimentally demonstrate that compared to previous methods, the nonlinear and commutative nature of DeCurvEd provides higher-quality editing.

Poster
Ankan Kumar Bhunia · Salman Khan · Hisham Cholakkal · Rao Muhammad Anwer · Jorma Laaksonen · Mubarak Shah · Fahad Shahbaz Khan

[ West Building Exhibit Halls ABC ]

The pose-guided person image generation task requires synthesizing photorealistic images of humans in arbitrary poses. The existing approaches use generative adversarial networks that do not necessarily maintain realistic textures or need dense correspondences that struggle to handle complex deformations and severe occlusions. In this work, we show how denoising diffusion models can be applied for high-fidelity person image synthesis with strong sample diversity and enhanced mode coverage of the learnt data distribution. Our proposed Person Image Diffusion Model (PIDM) disintegrates the complex transfer problem into a series of simpler forward-backward denoising steps. This helps in learning plausible source-to-target transformation trajectories that result in faithful textures and undistorted appearance details. We introduce a ‘texture diffusion module’ based on cross-attention to accurately model the correspondences between appearance and pose information available in source and target images. Further, we propose ‘disentangled classifier-free guidance’ to ensure close resemblance between the conditional inputs and the synthesized output in terms of both pose and appearance information. Our extensive results on two large-scale benchmarks and a user study demonstrate the photorealism of our proposed approach under challenging scenarios. We also show how our generated images can help in downstream tasks.

Poster
Gang Dai · Yifan Zhang · Qingfeng Wang · Qing Du · Zhuliang Yu · Zhuoman Liu · Shuangping Huang

[ West Building Exhibit Halls ABC ]

Training machines to synthesize diverse handwritings is an intriguing task. Recently, RNN-based methods have been proposed to generate stylized online Chinese characters. However, these methods mainly focus on capturing a person’s overall writing style, neglecting subtle style inconsistencies between characters written by the same person. For example, while a person’s handwriting typically exhibits general uniformity (e.g., glyph slant and aspect ratios), there are still small style variations in finer details (e.g., stroke length and curvature) of characters. In light of this, we propose to disentangle the style representations at both writer and character levels from individual handwritings to synthesize realistic stylized online handwritten characters. Specifically, we present the style-disentangled Transformer (SDT), which employs two complementary contrastive objectives to extract the style commonalities of reference samples and capture the detailed style patterns of each sample, respectively. Extensive experiments on various language scripts demonstrate the effectiveness of SDT. Notably, our empirical findings reveal that the two learned style representations provide information at different frequency magnitudes, underscoring the importance of separate style extraction. Our source code is public at: https://github.com/dailenson/SDT.

Poster
Harsh Rangwani · Lavish Bansal · Kartik Sharma · Tejan Karmali · Varun Jampani · R. Venkatesh Babu

[ West Building Exhibit Halls ABC ]

StyleGANs are at the forefront of controllable image generation as they produce a latent space that is semantically disentangled, making it suitable for image editing and manipulation. However, the performance of StyleGANs severely degrades when trained via class-conditioning on large-scale long-tailed datasets. We find that one reason for degradation is the collapse of latents for each class in the W latent space. With NoisyTwins, we first introduce an effective and inexpensive augmentation strategy for class embeddings, which then decorrelates the latents based on self-supervision in the W space. This decorrelation mitigates collapse, ensuring that our method preserves intra-class diversity with class-consistency in image generation. We show the effectiveness of our approach on large-scale real-world long-tailed datasets of ImageNet-LT and iNaturalist 2019, where our method outperforms other methods by ~ 19% on FID, establishing a new state-of-the-art.

Poster
Jaskirat Singh · Stephen Gould · Liang Zheng

[ West Building Exhibit Halls ABC ]

Controllable image synthesis with user scribbles has gained huge public interest with the recent advent of text-conditioned latent diffusion models. The user scribbles control the color composition while the text prompt provides control over the overall image semantics. However, we find that prior works suffer from an intrinsic domain shift problem wherein the generated outputs often lack details and resemble simplistic representations of the target domain. In this paper, we propose a novel guided image synthesis framework, which addresses this problem by modeling the output image as the solution of a constrained optimization problem. We show that while computing an exact solution to the optimization is infeasible, an approximation of the same can be achieved while just requiring a single pass of the reverse diffusion process. Additionally, we show that by simply defining a cross-attention based correspondence between the input text tokens and the user stroke-painting, the user is also able to control the semantics of different painted regions without requiring any conditional training or finetuning. Human user study results show that the proposed approach outperforms the previous state-of-the-art by over 85.32% on the overall user satisfaction scores. Project page for our paper is available at https://1jsingh.github.io/gradop.

Poster
Bahjat Kawar · Shiran Zada · Oran Lang · Omer Tov · Huiwen Chang · Tali Dekel · Inbar Mosseri · Michal Irani

[ West Building Exhibit Halls ABC ]

Text-conditioned image editing has recently attracted considerable interest. However, most methods are currently limited to one of the following: specific editing types (e.g., object overlay, style transfer), synthetically generated images, or requiring multiple input images of a common object. In this paper we demonstrate, for the very first time, the ability to apply complex (e.g., non-rigid) text-based semantic edits to a single real image. For example, we can change the posture and composition of one or multiple objects inside an image, while preserving its original characteristics. Our method can make a standing dog sit down, cause a bird to spread its wings, etc. -- each within its single high-resolution user-provided natural image. Contrary to previous work, our proposed method requires only a single input image and a target text (the desired edit). It operates on real images, and does not require any additional inputs (such as image masks or additional views of the object). Our method, called Imagic, leverages a pre-trained text-to-image diffusion model for this task. It produces a text embedding that aligns with both the input image and the target text, while fine-tuning the diffusion model to capture the image-specific appearance. We demonstrate the quality and versatility of …

Poster
Hsiao Yuan Hsu · Xiangteng He · Yuxin Peng · Hao Kong · Qing Zhang

[ West Building Exhibit Halls ABC ]

Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements, including text, logo, and underlay, which is a key to automatic template-free creative graphic design. In practical applications, e.g., poster designs, the canvas is originally non-empty, and both inter-element relationships as well as inter-layer relationships should be concerned when generating a proper layout. A few recent works deal with them simultaneously, but they still suffer from poor graphic performance, such as a lack of layout variety or spatial non-alignment. Since content-aware visual-textual presentation layout is a novel task, we first construct a new dataset named PKU PosterLayout, which consists of 9,974 poster-layout pairs and 905 images, i.e., non-empty canvases. It is more challenging and useful for greater layout variety, domain diversity, and content diversity. Then, we propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers, and a novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts. Specifically, the discriminator is design-sequence-aware and will supervise the “design” process of the generator. Experimental results verify the usefulness of the new benchmark and the effectiveness of the proposed approach, which achieves the best performance …

Poster
Zhixing Zhang · Ligong Han · Arnab Ghosh · Dimitris N. Metaxas · Jian Ren

[ West Building Exhibit Halls ABC ]

Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and …

Poster
Ron Mokady · Amir Hertz · Kfir Aberman · Yael Pritch · Daniel Cohen-Or

[ West Building Exhibit Halls ABC ]

Recent large-scale text-guided diffusion models provide powerful image generation capabilities. Currently, a massive effort is given to enable the modification of these images using text only as means to offer intuitive and versatile editing tools. To edit a real image using these state-of-the-art tools, one must first invert the image with a meaningful text prompt into the pretrained model’s domain. In this paper, we introduce an accurate inversion technique and thus facilitate an intuitive text-based modification of the image. Our proposed inversion consists of two key novel components: (i) Pivotal inversion for diffusion models. While current methods aim at mapping random noise samples to a single input image, we use a single pivotal noise vector for each timestamp and optimize around it. We recognize that a direct DDIM inversion is inadequate on its own, but does provide a rather good anchor for our optimization. (ii) NULL-text optimization, where we only modify the unconditional textual embedding that is used for classifier-free guidance, rather than the input text embedding. This allows for keeping both the model weights and the conditional embedding intact and hence enables applying prompt-based editing while avoiding the cumbersome tuning of the model’s weights. Our Null-text inversion, based on …

Poster
Gowthami Somepalli · Vasu Singla · Micah Goldblum · Jonas Geiping · Tom Goldstein

[ West Building Exhibit Halls ABC ]

Cutting-edge diffusion models produce images with high quality and customizability, enabling them to be used for commercial art and graphic design purposes. But do diffusion models create unique works of art, or are they replicating content directly from their training sets? In this work, we study image retrieval frameworks that enable us to compare generated images with training samples and detect when content has been replicated. Applying our frameworks to diffusion models trained on multiple datasets including Oxford flowers, Celeb-A, ImageNet, and LAION, we discuss how factors such as training set size impact rates of content replication. We also identify cases where diffusion models, including the popular Stable Diffusion model, blatantly copy from their training data.

Poster
Hyungjin Chung · Jeongsol Kim · Sehui Kim · Jong Chul Ye

[ West Building Exhibit Halls ABC ]

Diffusion model-based inverse problem solvers have demonstrated state-of-the-art performance in cases where the forward operator is known (i.e. non-blind). However, the applicability of the method to blind inverse problems has yet to be explored. In this work, we show that we can indeed solve a family of blind inverse problems by constructing another diffusion prior for the forward operator. Specifically, parallel reverse diffusion guided by gradients from the intermediate stages enables joint optimization of both the forward operator parameters as well as the image, such that both are jointly estimated at the end of the parallel reverse diffusion procedure. We show the efficacy of our method on two representative tasks --- blind deblurring, and imaging through turbulence --- and show that our method yields state-of-the-art performance, while also being flexible to be applicable to general blind inverse problems when we know the functional forms. Code available: https://github.com/BlindDPS/blind-dps

Poster
Nithin Gopalakrishnan Nair · Wele Gedara Chaminda Bandara · Vishal M. Patel

[ West Building Exhibit Halls ABC ]

Generating photos satisfying multiple constraints finds broad utility in the content creation industry. A key hurdle to accomplishing this task is the need for paired data consisting of all modalities (i.e., constraints) and their corresponding output. Moreover, existing methods need retraining using paired data across all modalities to introduce a new condition. This paper proposes a solution to this problem based on denoising diffusion probabilistic models (DDPMs). Our motivation for choosing diffusion models over other generative models comes from the flexible internal structure of diffusion models. Since each sampling step in the DDPM follows a Gaussian distribution, we show that there exists a closed-form solution for generating an image given various constraints. Our method can utilize a single diffusion model trained on multiple sub-tasks and improve the combined task through our proposed sampling strategy. We also introduce a novel reliability parameter that allows using different off-the-shelf diffusion models trained across various datasets during sampling time alone to guide it to the desired outcome satisfying multiple constraints. We perform experiments on various standard multimodal tasks to demonstrate the effectiveness of our approach. More details can be found at: https://nithin-gk.github.io/projectpages/Multidiff

Poster
Ziqi Huang · Kelvin C.K. Chan · Yuming Jiang · Ziwei Liu

[ West Building Exhibit Halls ABC ]

Diffusion models arise as a powerful generative tool recently. Despite the great progress, existing diffusion models mainly focus on uni-modal control, i.e., the diffusion process is driven by only one modality of condition. To further unleash the users’ creativity, it is desirable for the model to be controllable by multiple modalities simultaneously, e.g., generating and editing faces by describing the age (text-driven) while drawing the face shape (mask-driven). In this work, we present Collaborative Diffusion, where pre-trained uni-modal diffusion models collaborate to achieve multi-modal face generation and editing without re-training. Our key insight is that diffusion models driven by different modalities are inherently complementary regarding the latent denoising steps, where bilateral connections can be established upon. Specifically, we propose dynamic diffuser, a meta-network that adaptively hallucinates multi-modal denoising steps by predicting the spatial-temporal influence functions for each pre-trained uni-modal model. Collaborative Diffusion not only collaborates generation capabilities from uni-modal diffusion models, but also integrates multiple uni-modal manipulations to perform multi-modal editing. Extensive qualitative and quantitative experiments demonstrate the superiority of our framework in both image quality and condition consistency.

Poster
Gyeongman Kim · Hajin Shim · Hyunsu Kim · Yunjey Choi · Junho Kim · Eunho Yang

[ West Building Exhibit Halls ABC ]

Inspired by the impressive performance of recent face image editing methods, several studies have been naturally proposed to extend these methods to the face video editing task. One of the main challenges here is temporal consistency among edited frames, which is still unresolved. To this end, we propose a novel face video editing framework based on diffusion autoencoders that can successfully extract the decomposed features - for the first time as a face video editing model - of identity and motion from a given video. This modeling allows us to edit the video by simply manipulating the temporally invariant feature to the desired direction for the consistency. Another unique strength of our model is that, since our model is based on diffusion models, it can satisfy both reconstruction and edit capabilities at the same time, and is robust to corner cases in wild face videos (e.g. occluded faces) unlike the existing GAN-based methods.

Poster
Runsen Feng · Zongyu Guo · Weiping Li · Zhibo Chen

[ West Building Exhibit Halls ABC ]

In theory, vector quantization (VQ) is always better than scalar quantization (SQ) in terms of rate-distortion (R-D) performance. Recent state-of-the-art methods for neural image compression are mainly based on nonlinear transform coding (NTC) with uniform scalar quantization, overlooking the benefits of VQ due to its exponentially increased complexity. In this paper, we first investigate on some toy sources, demonstrating that even if modern neural networks considerably enhance the compression performance of SQ with nonlinear transform, there is still an insurmountable chasm between SQ and VQ. Therefore, revolving around VQ, we propose a novel framework for neural image compression named Nonlinear Vector Transform Coding (NVTC). NVTC solves the critical complexity issue of VQ through (1) a multi-stage quantization strategy and (2) nonlinear vector transforms. In addition, we apply entropy-constrained VQ in latent space to adaptively determine the quantization boundaries for joint rate-distortion optimization, which improves the performance both theoretically and experimentally. Compared to previous NTC approaches, NVTC demonstrates superior rate-distortion performance, faster decoding speed, and smaller model size. Our code is available at https://github.com/USTC-IMCL/NVTC.

Poster
Linfeng Qi · Jiahao Li · Bin Li · Houqiang Li · Yan Lu

[ West Building Exhibit Halls ABC ]

In most existing neural video codecs, the information flow therein is uni-directional, where only motion coding provides motion vectors for frame coding. In this paper, we argue that, through information interactions, the synergy between motion coding and frame coding can be achieved. We effectively introduce bi-directional information interactions between motion coding and frame coding via our Motion Information Propagation. When generating the temporal contexts for frame coding, the high-dimension motion feature from the motion decoder serves as motion guidance to mitigate the alignment errors. Meanwhile, besides assisting frame coding at the current time step, the feature from context generation will be propagated as motion condition when coding the subsequent motion latent. Through the cycle of such interactions, feature propagation on motion coding is built, strengthening the capacity of exploiting long-range temporal correlation. In addition, we propose hybrid context generation to exploit the multi-scale context features and provide better motion condition. Experiments show that our method can achieve 12.9% bit rate saving over the previous SOTA neural video codec.

Poster
Xiaotao Hu · Zhewei Huang · Ailin Huang · Jun Xu · Shuchang Zhou

[ West Building Exhibit Halls ABC ]

The performance of video prediction has been greatly boosted by advanced deep neural networks. However, most of the current methods suffer from large model sizes and require extra inputs, e.g., semantic/depth maps, for promising performance. For efficiency consideration, in this paper, we propose a Dynamic Multi-scale Voxel Flow Network (DMVFN) to achieve better video prediction performance at lower computational costs with only RGB images, than previous methods. The core of our DMVFN is a differentiable routing module that can effectively perceive the motion scales of video frames. Once trained, our DMVFN selects adaptive sub-networks for different inputs at the inference stage. Experiments on several benchmarks demonstrate that our DMVFN is an order of magnitude faster than Deep Voxel Flow and surpasses the state-of-the-art iterative-based OPT on generated image quality. Our code and demo are available at https://huxiaotaostasy.github.io/DMVFN/.

Poster
Bo He · Xitong Yang · Hanyu Wang · Zuxuan Wu · Hao Chen · Shuaiyi Huang · Yixuan Ren · Ser-Nam Lim · Abhinav Shrivastava

[ West Building Exhibit Halls ABC ]

Implicit neural representations (INR) have gained increasing attention in representing 3D scenes and images, and have been recently applied to encode videos (e.g., NeRV, E-NeRV). While achieving promising results, existing INR-based methods are limited to encoding a handful of short videos (e.g., seven 5-second videos in the UVG dataset) with redundant visual content, leading to a model design that fits individual video frames independently and is not efficiently scalable to a large number of diverse videos. This paper focuses on developing neural representations for a more practical setup -- encoding long and/or a large number of videos with diverse visual content. We first show that instead of dividing videos into small subsets and encoding them with separate models, encoding long and diverse videos jointly with a unified model achieves better compression results. Based on this observation, we propose D-NeRV, a novel neural representation framework designed to encode diverse videos by (i) decoupling clip-specific visual content from motion information, (ii) introducing temporal reasoning into the implicit neural network, and (iii) employing the task-oriented flow as intermediate output to reduce spatial redundancies. Our new model largely surpasses NeRV and traditional video compression techniques on UCF101 and UVG datasets on the video compression …

Poster
Shaowen Xie · Hao Zhu · Zhen Liu · Qi Zhang · You Zhou · Xun Cao · Zhan Ma

[ West Building Exhibit Halls ABC ]

Implicit neural representation (INR) characterizes the attributes of a signal as a function of corresponding coordinates which emerges as a sharp weapon for solving inverse problems. However, the capacity of INR is limited by the spectral bias in the network training. In this paper, we find that such a frequency-related problem could be largely solved by re-arranging the coordinates of the input signal, for which we propose the disorder-invariant implicit neural representation (DINER) by augmenting a hash-table to a traditional INR backbone. Given discrete signals sharing the same histogram of attributes and different arrangement orders, the hash-table could project the coordinates into the same distribution for which the mapped signal can be better modeled using the subsequent INR network, leading to significantly alleviated spectral bias. Experiments not only reveal the generalization of the DINER for different INR backbones (MLP vs. SIREN) and various tasks (image/video representation, phase retrieval, and refractive index recovery) but also show the superiority over the state-of-the-art algorithms both in quality and speed.

Poster
Jiafeng Li · Ying Wen · Lianghua He

[ West Building Exhibit Halls ABC ]

Convolutional Neural Networks (CNNs) have achieved remarkable performance in various computer vision tasks but this comes at the cost of tremendous computational resources, partly due to convolutional layers extracting redundant features. Recent works either compress well-trained large-scale models or explore well-designed lightweight models. In this paper, we make an attempt to exploit spatial and channel redundancy among features for CNN compression and propose an efficient convolution module, called SCConv (Spatial and Channel reconstruction Convolution), to decrease redundant computing and facilitate representative feature learning. The proposed SCConv consists of two units: spatial reconstruction unit (SRU) and channel reconstruction unit (CRU). SRU utilizes a separate-and-reconstruct method to suppress the spatial redundancy while CRU uses a split-transform-and-fuse strategy to diminish the channel redundancy. In addition, SCConv is a plug-and-play architectural unit that can be used to replace standard convolution in various convolutional neural networks directly. Experimental results show that SCConv-embedded models are able to achieve better performance by reducing redundant features with significantly lower complexity and computational costs.

Poster
Xuan Shen · Yaohua Wang · Ming Lin · Yilun Huang · Hao Tang · Xiuyu Sun · Yanzhi Wang

[ West Building Exhibit Halls ABC ]

The rapid advances in Vision Transformer (ViT) refresh the state-of-the-art performances in various vision tasks, overshadowing the conventional CNN-based models. This ignites a few recent striking-back research in the CNN world showing that pure CNN models can achieve as good performance as ViT models when carefully tuned. While encouraging, designing such high-performance CNN models is challenging, requiring non-trivial prior knowledge of network design. To this end, a novel framework termed Mathematical Architecture Design for Deep CNN~(DeepMAD) is proposed to design high-performance CNN models in a principled way. In DeepMAD, a CNN network is modeled as an information processing system whose expressiveness and effectiveness can be analytically formulated by their structural parameters. Then a constrained mathematical programming (MP) problem is proposed to optimize these structural parameters. The MP problem can be easily solved by off-the-shelf MP solvers on CPUs with a small memory footprint. In addition, DeepMAD is a pure mathematical framework: no GPU or training data is required during network design. The superiority of DeepMAD is validated on multiple large-scale computer vision benchmark datasets. Notably on ImageNet-1k, only using conventional convolutional layers, DeepMAD achieves 0.7% and 1.5% higher top-1 accuracy than ConvNeXt and Swin on Tiny level, and 0.8% and …

Poster
Jiechong Song · Chong Mou · Shiqi Wang · Siwei Ma · Jian Zhang

[ West Building Exhibit Halls ABC ]

By integrating certain optimization solvers with deep neural networks, deep unfolding network (DUN) with good interpretability and high performance has attracted growing attention in compressive sensing (CS). However, existing DUNs often improve the visual quality at the price of a large number of parameters and have the problem of feature information loss during iteration. In this paper, we propose an Optimization-inspired Cross-attention Transformer (OCT) module as an iterative process, leading to a lightweight OCT-based Unfolding Framework (OCTUF) for image CS. Specifically, we design a novel Dual Cross Attention (Dual-CA) sub-module, which consists of an Inertia-Supplied Cross Attention (ISCA) block and a Projection-Guided Cross Attention (PGCA) block. ISCA block introduces multi-channel inertia forces and increases the memory effect by a cross attention mechanism between adjacent iterations. And, PGCA block achieves an enhanced information interaction, which introduces the inertia force into the gradient descent step through a cross attention block. Extensive CS experiments manifest that our OCTUF achieves superior performance compared to state-of-the-art methods while training lower complexity. Codes are available at https://github.com/songjiechong/OCTUF.

Poster
Ali Hassani · Steven Walton · Jiachen Li · Shen Li · Humphrey Shi

[ West Building Exhibit Halls ABC ]

We present Neighborhood Attention (NA), the first efficient and scalable sliding window attention mechanism for vision. NA is a pixel-wise operation, localizing self attention (SA) to the nearest neighboring pixels, and therefore enjoys a linear time and space complexity compared to the quadratic complexity of SA. The sliding window pattern allows NA’s receptive field to grow without needing extra pixel shifts, and preserves translational equivariance, unlike Swin Transformer’s Window Self Attention (WSA). We develop NATTEN (Neighborhood Attention Extension), a Python package with efficient C++ and CUDA kernels, which allows NA to run up to 40% faster than Swin’s WSA while using up to 25% less memory. We further present Neighborhood Attention Transformer (NAT), a new hierarchical transformer design based on NA that boosts image classification and downstream vision performance. Experimental results on NAT are competitive; NAT-Tiny reaches 83.2% top-1 accuracy on ImageNet, 51.4% mAP on MS-COCO and 48.4% mIoU on ADE20K, which is 1.9% ImageNet accuracy, 1.0% COCO mAP, and 2.6% ADE20K mIoU improvement over a Swin model with similar size. To support more research based on sliding window attention, we open source our project and release our checkpoints.

Poster
Shuning Chang · Pichao Wang · Ming Lin · Fan Wang · David Junhao Zhang · Rong Jin · Mike Zheng Shou

[ West Building Exhibit Halls ABC ]

The quadratic computational complexity to the number of tokens limits the practical applications of Vision Transformers (ViTs). Several works propose to prune redundant tokens to achieve efficient ViTs. However, these methods generally suffer from (i) dramatic accuracy drops, (ii) application difficulty in the local vision transformer, and (iii) non-general-purpose networks for downstream tasks. In this work, we propose a novel Semantic Token ViT (STViT), for efficient global and local vision transformers, which can also be revised to serve as backbone for downstream tasks. The semantic tokens represent cluster centers, and they are initialized by pooling image tokens in space and recovered by attention, which can adaptively represent global or local semantic information. Due to the cluster properties, a few semantic tokens can attain the same effect as vast image tokens, for both global and local vision transformers. For instance, only 16 semantic tokens on DeiT-(Tiny,Small,Base) can achieve the same accuracy with more than 100% inference speed improvement and nearly 60% FLOPs reduction; on Swin-(Tiny,Small,Base), we can employ 16 semantic tokens in each window to further speed it up by around 20% with slight accuracy increase. Besides great success in image classification, we also extend our method to video recognition. In …

Poster
Gongjie Zhang · Zhipeng Luo · Zichen Tian · Jingyi Zhang · Xiaoqin Zhang · Shijian Lu

[ West Building Exhibit Halls ABC ]

Multi-scale features have been proven highly effective for object detection but often come with huge and even prohibitive extra computation costs, especially for the recent Transformer-based detectors. In this paper, we propose Iterative Multi-scale Feature Aggregation (IMFA) - a generic paradigm that enables efficient use of multi-scale features in Transformer-based object detectors. The core idea is to exploit sparse multi-scale features from just a few crucial locations, and it is achieved with two novel designs. First, IMFA rearranges the Transformer encoder-decoder pipeline so that the encoded features can be iteratively updated based on the detection predictions. Second, IMFA sparsely samples scale-adaptive features for refined detection from just a few keypoint locations under the guidance of prior detection predictions. As a result, the sampled multi-scale features are sparse yet still highly beneficial for object detection. Extensive experiments show that the proposed IMFA boosts the performance of multiple Transformer-based object detectors significantly yet with only slight computational overhead.

Poster
Steffen Czolbe · Adrian V. Dalca

[ West Building Exhibit Halls ABC ]

Neuroimage processing tasks like segmentation, reconstruction, and registration are central to the study of neuroscience. Robust deep learning strategies and architectures used to solve these tasks are often similar. Yet, when presented with a new task or a dataset with different visual characteristics, practitioners most often need to train a new model, or fine-tune an existing one. This is a time-consuming process that poses a substantial barrier for the thousands of neuroscientists and clinical researchers who often lack the resources or machine-learning expertise to train deep learning models. In practice, this leads to a lack of adoption of deep learning, and neuroscience tools being dominated by classical frameworks. We introduce Neuralizer, a single model that generalizes to previously unseen neuroimaging tasks and modalities without the need for re-training or fine-tuning. Tasks do not have to be known a priori, and generalization happens in a single forward pass during inference. The model can solve processing tasks across multiple image modalities, acquisition methods, and datasets, and generalize to tasks and modalities it has not been trained on. Our experiments on coronal slices show that when few annotated subjects are available, our multi-task network outperforms task-specific baselines without training on the task.

Poster
Saimunur Rahman · Piotr Koniusz · Lei Wang · Luping Zhou · Peyman Moghadam · Changming Sun

[ West Building Exhibit Halls ABC ]

Visual representation based on covariance matrix has demonstrates its efficacy for image classification by characterising the pairwise correlation of different channels in convolutional feature maps. However, pairwise correlation will become misleading once there is another channel correlating with both channels of interest, resulting in the “confounding” effect. For this case, “partial correlation” which removes the confounding effect shall be estimated instead. Nevertheless, reliably estimating partial correlation requires to solve a symmetric positive definite matrix optimisation, known as sparse inverse covariance estimation (SICE). How to incorporate this process into CNN remains an open issue. In this work, we formulate SICE as a novel structured layer of CNN. To ensure end-to-end trainability, we develop an iterative method to solve the above matrix optimisation during forward and backward propagation steps. Our work obtains a partial correlation based deep visual representation and mitigates the small sample problem often encountered by covariance matrix estimation in CNN. Computationally, our model can be effectively trained with GPU and works well with a large number of channels of advanced CNNs. Experiments show the efficacy and superior classification performance of our deep visual representation compared to covariance matrix based counterparts.

Poster
Xiangwen Kong · Xiangyu Zhang

[ West Building Exhibit Halls ABC ]

Recently, Masked Image Modeling (MIM) achieves great success in self-supervised visual recognition. However, as a reconstruction-based framework, it is still an open question to understand how MIM works, since MIM appears very different from previous well-studied siamese approaches such as contrastive learning. In this paper, we propose a new viewpoint: MIM implicitly learns occlusion-invariant features, which is analogous to other siamese methods while the latter learns other invariance. By relaxing MIM formulation into an equivalent siamese form, MIM methods can be interpreted in a unified framework with conventional methods, among which only a) data transformations, i.e. what invariance to learn, and b) similarity measurements are different. Furthermore, taking MAE (He et al., 2021) as a representative example of MIM, we empirically find the success of MIM models relates a little to the choice of similarity functions, but the learned occlusion invariant feature introduced by masked image -- it turns out to be a favored initialization for vision transformers, even though the learned feature could be less semantic. We hope our findings could inspire researchers to develop more powerful self-supervised methods in computer vision community.

Poster
Jihao Liu · Xin Huang · Jinliang Zheng · Yu Liu · Hongsheng Li

[ West Building Exhibit Halls ABC ]

In this paper, we propose Mixed and Masked AutoEncoder (MixMAE), a simple but efficient pretraining method that is applicable to various hierarchical Vision Transformers. Existing masked image modeling (MIM) methods for hierarchical Vision Transformers replace a random subset of input tokens with a special [MASK] symbol and aim at reconstructing original image tokens from the corrupted image. However, we find that using the [MASK] symbol greatly slows down the training and causes pretraining-finetuning inconsistency, due to the large masking ratio (e.g., 60% in SimMIM). On the other hand, MAE does not introduce [MASK] tokens at its encoder at all but is not applicable for hierarchical Vision Transformers. To solve the issue and accelerate the pretraining of hierarchical models, we replace the masked tokens of one image with visible tokens of another image, i.e., creating a mixed image. We then conduct dual reconstruction to reconstruct the two original images from the mixed input, which significantly improves efficiency. While MixMAE can be applied to various hierarchical Transformers, this paper explores using Swin Transformer with a large window size and scales up to huge model size (to reach 600M parameters). Empirical results demonstrate that MixMAE can learn high-quality visual representations efficiently. Notably, MixMAE …

Poster
Lai Wei · Zhengwei Chen · Jun Yin · Changming Zhu · Rigui Zhou · Jin Liu

[ West Building Exhibit Halls ABC ]

Spectral-type subspace clustering algorithms have shown excellent performance in many subspace clustering applications. The existing spectral-type subspace clustering algorithms either focus on designing constraints for the reconstruction coefficient matrix or feature extraction methods for finding latent features of original data samples. In this paper, inspired by graph convolutional networks, we use the graph convolution technique to develop a feature extraction method and a coefficient matrix constraint simultaneously. And the graph-convolutional operator is updated iteratively and adaptively in our proposed algorithm. Hence, we call the proposed method adaptive graph convolutional subspace clustering (AGCSC). We claim that, by using AGCSC, the aggregated feature representation of original data samples is suitable for subspace clustering, and the coefficient matrix could reveal the subspace structure of the original data set more faithfully. Finally, plenty of subspace clustering experiments prove our conclusions and show that AGCSC outperforms some related methods as well as some deep models.

Poster
Runzhong Wang · Ziao Guo · Shaofei Jiang · Xiaokang Yang · Junchi Yan

[ West Building Exhibit Halls ABC ]

Graph matching (GM) aims at discovering node matching between graphs, by maximizing the node- and edge-wise affinities between the matched elements. As an NP-hard problem, its challenge is further pronounced in the existence of outlier nodes in both graphs which is ubiquitous in practice, especially for vision problems. However, popular affinity-maximization-based paradigms often lack a principled scheme to suppress the false matching and resort to handcrafted thresholding to dismiss the outliers. This limitation is also inherited by the neural GM solvers though they have shown superior performance in the ideal no-outlier setting. In this paper, we propose to formulate the partial GM problem as the top-k selection task with a given/estimated number of inliers k. Specifically, we devise a differentiable top-k module that enables effective gradient descent over the optimal-transport layer, which can be readily plugged into SOTA deep GM pipelines including the quadratic matching network NGMv2 as well as the linear matching network GCAN. Meanwhile, the attention-fused aggregation layers are developed to estimate k to enable automatic outlier-robust matching in the wild. Last but not least, we remake and release a new benchmark called IMC-PT-SparseGM, originating from the IMC-PT stereo-matching dataset. The new benchmark involves more scale-varying graphs and …

Poster
Zhihao Lin · Yongtao Wang · Jinhe Zhang · Xiaojie Chu

[ West Building Exhibit Halls ABC ]

Dynamic neural network is an emerging research topic in deep learning. With adaptive inference, dynamic models can achieve remarkable accuracy and computational efficiency. However, it is challenging to design a powerful dynamic detector, because of no suitable dynamic architecture and exiting criterion for object detection. To tackle these difficulties, we propose a dynamic framework for object detection, named DynamicDet. Firstly, we carefully design a dynamic architecture based on the nature of the object detection task. Then, we propose an adaptive router to analyze the multi-scale information and to decide the inference route automatically. We also present a novel optimization strategy with an exiting criterion based on the detection losses for our dynamic detectors. Last, we present a variable-speed inference strategy, which helps to realize a wide range of accuracy-speed trade-offs with only one dynamic detector. Extensive experiments conducted on the COCO benchmark demonstrate that the proposed DynamicDet achieves new state-of-the-art accuracy-speed trade-offs. For instance, with comparable accuracy, the inference speed of our dynamic detector Dy-YOLOv7-W6 surpasses YOLOv7-E6 by 12%, YOLOv7-D6 by 17%, and YOLOv7-E6E by 39%. The code is available at https://github.com/VDIGPKU/DynamicDet.

Poster
Sanjoy Kundu · Sathyanarayanan N. Aakur

[ West Building Exhibit Halls ABC ]

Scene graphs provide a rich, structured representation of a scene by encoding the entities (objects) and their spatial relationships in a graphical format. This representation has proven useful in several tasks, such as question answering, captioning, and even object detection, to name a few. Current approaches take a generation-by-classification approach where the scene graph is generated through labeling of all possible edges between objects in a scene, which adds computational overhead to the approach. This work introduces a generative transformer-based approach to generating scene graphs beyond link prediction. Using two transformer-based components, we first sample a possible scene graph structure from detected objects and their visual features. We then perform predicate classification on the sampled edges to generate the final scene graph. This approach allows us to efficiently generate scene graphs from images with minimal inference overhead. Extensive experiments on the Visual Genome dataset demonstrate the efficiency of the proposed approach. Without bells and whistles, we obtain, on average, 20.7% mean recall (mR@100) across different settings for scene graph generation (SGG), outperforming state-of-the-art SGG approaches while offering competitive performance to unbiased SGG approaches.

Poster
Tianlei Jin · Fangtai Guo · Qiwei Meng · Shiqiang Zhu · Xiangming Xi · Wen Wang · Zonghao Mu · Wei Song

[ West Building Exhibit Halls ABC ]

Scene graph generation (SGG) methods have historically suffered from long-tail bias and slow inference speed. In this paper, we notice that humans can analyze relationships between objects relying solely on context descriptions,and this abstract cognitive process may be guided by experience. For example, given descriptions of cup and table with their spatial locations, humans can speculate possible relationships < cup, on, table > or < table, near, cup >. Even without visual appearance information, some impossible predicates like flying in and looking at can be empirically excluded. Accordingly, we propose a contextual scene graph generation (C-SGG) method without using visual information and introduce a context augmentation method. We propose that slight perturbations in the position and size of objects do not essentially affect the relationship between objects. Therefore, at the context level, we can produce diverse context descriptions by using a context augmentation method based on the original dataset. These diverse context descriptions can be used for unbiased training of C-SGG to alleviate long-tail bias. In addition, we also introduce a context guided visual scene graph generation (CV-SGG) method, which leverages the C-SGG experience to guide vision to focus on possible predicates. Through extensive experiments on the publicly available dataset, …

Poster
Rui Wang · Dongdong Chen · Zuxuan Wu · Yinpeng Chen · Xiyang Dai · Mengchen Liu · Lu Yuan · Yu-Gang Jiang

[ West Building Exhibit Halls ABC ]

Benefiting from masked visual modeling, self-supervised video representation learning has achieved remarkable progress. However, existing methods focus on learning representations from scratch through reconstructing low-level features like raw pixel values. In this paper, we propose masked video distillation (MVD), a simple yet effective two-stage masked feature modeling framework for video representation learning: firstly we pretrain an image (or video) model by recovering low-level features of masked patches, then we use the resulting features as targets for masked feature modeling. For the choice of teacher models, we observe that students taught by video teachers perform better on temporally-heavy video tasks, while image teachers transfer stronger spatial representations for spatially-heavy video tasks. Visualization analysis also indicates different teachers produce different learned patterns for students. To leverage the advantage of different teachers, we design a spatial-temporal co-teaching method for MVD. Specifically, we distill student models from both video teachers and image teachers by masked feature modeling. Extensive experimental results demonstrate that video transformers pretrained with spatial-temporal co-teaching outperform models distilled with a single teacher on a multitude of video datasets. Our MVD with vanilla ViT achieves state-of-the-art performance compared with previous methods on several challenging video downstream tasks. For example, with the ViT-Large …

Poster
Rezaul Karim · He Zhao · Richard P. Wildes · Mennatullah Siam

[ West Building Exhibit Halls ABC ]

Multiscale video transformers have been explored in a wide variety of vision tasks. To date, however, the multiscale processing has been confined to the encoder or decoder alone. We present a unified multiscale encoder-decoder transformer that is focused on dense prediction tasks in videos. Multiscale representation at both encoder and decoder yields key benefits of implicit extraction of spatiotemporal features (i.e. without reliance on input optical flow) as well as temporal consistency at encoding and coarse-to-fine detection for high-level (e.g. object) semantics to guide precise localization at decoding. Moreover, we propose a transductive learning scheme through many-to-many label propagation to provide temporally consistent predictions.We showcase our Multiscale Encoder-Decoder Video Transformer (MED-VT) on Automatic Video Object Segmentation (AVOS) and actor/action segmentation, where we outperform state-of-the-art approaches on multiple benchmarks using only raw images, without using optical flow.

Poster
Richard E. L. Higgins · David F. Fouhey

[ West Building Exhibit Halls ABC ]

We present a method that uses manipulation to learn to understand the objects people hold and as well as hand-object contact. We train a system that takes a single RGB image and produces a pixel-embedding that can be used to answer grouping questions (do these two pixels go together) as well as hand-association questions (is this hand holding that pixel). Rather painstakingly annotate segmentation masks, we observe people in realistic video data. We show that pairing epipolar geometry with modern optical flow produces simple and effective pseudo-labels for grouping. Given people segmentations, we can further associate pixels with hands to understand contact. Our system achieves competitive results on hand and hand-held object tasks.

Poster
Qihao Liu · Junfeng Wu · Yi Jiang · Xiang Bai · Alan L. Yuille · Song Bai

[ West Building Exhibit Halls ABC ]

Despite significant efforts, cutting-edge video segmentation methods still remain sensitive to occlusion and rapid movement, due to their reliance on the appearance of objects in the form of object embeddings, which are vulnerable to these disturbances. A common solution is to use optical flow to provide motion information, but essentially it only considers pixel-level motion, which still relies on appearance similarity and hence is often inaccurate under occlusion and fast movement. In this work, we study the instance-level motion and present InstMove, which stands for Instance Motion for Object-centric Video Segmentation. In comparison to pixel-wise motion, InstMove mainly relies on instance-level motion information that is free from image feature embeddings, and features physical interpretations, making it more accurate and robust toward occlusion and fast-moving objects. To better fit in with the video segmentation tasks, InstMove uses instance masks to model the physical presence of an object and learns the dynamic model through a memory network to predict its position and shape in the next frame. With only a few lines of code, InstMove can be integrated into current SOTA methods for three different video segmentation tasks and boost their performance. Specifically, we improve the previous arts by 1.5 AP on …

Poster
Yongqi An · Xu Zhao · Tao Yu · Haiyun Guo · Chaoyang Zhao · Ming Tang · Jinqiao Wang

[ West Building Exhibit Halls ABC ]

Background subtraction (BGS) aims to extract all moving objects in the video frames to obtain binary foreground segmentation masks. Deep learning has been widely used in this field. Compared with supervised-based BGS methods, unsupervised methods have better generalization. However, previous unsupervised deep learning BGS algorithms perform poorly in sophisticated scenarios such as shadows or night lights, and they cannot detect objects outside the pre-defined categories. In this work, we propose an unsupervised BGS algorithm based on zero-shot object detection called Zero-shot Background Subtraction ZBS. The proposed method fully utilizes the advantages of zero-shot object detection to build the open-vocabulary instance-level background model. Based on it, the foreground can be effectively extracted by comparing the detection results of new frames with the background model. ZBS performs well for sophisticated scenarios, and it has rich and extensible categories. Furthermore, our method can easily generalize to other tasks, such as abandoned object detection in unseen environments. We experimentally show that ZBS surpasses state-of-the-art unsupervised BGS methods by 4.70% F-Measure on the CDnet 2014 dataset. The code is released at https://github.com/CASIA-IVA-Lab/ZBS.

Poster
Yiming Cui

[ West Building Exhibit Halls ABC ]

Video object detection needs to solve feature degradation situations that rarely happen in the image domain. One solution is to use the temporal information and fuse the features from the neighboring frames. With Transformer-based object detectors getting a better performance on the image domain tasks, recent works began to extend those methods to video object detection. However, those existing Transformer-based video object detectors still follow the same pipeline as those used for classical object detectors, like enhancing the object feature representations by aggregation. In this work, we take a different perspective on video object detection. In detail, we improve the qualities of queries for the Transformer-based models by aggregation. To achieve this goal, we first propose a vanilla query aggregation module that weighted averages the queries according to the features of the neighboring frames. Then, we extend the vanilla module to a more practical version, which generates and aggregates queries according to the features of the input frames. Extensive experimental results validate the effectiveness of our proposed methods: On the challenging ImageNet VID benchmark, when integrated with our proposed modules, the current state-of-the-art Transformer-based object detectors can be improved by more than 2.4% on mAP and 4.2% on AP50.

Poster
Anwesa Choudhuri · Girish Chowdhary · Alexander G. Schwing

[ West Building Exhibit Halls ABC ]

Object queries have emerged as a powerful abstraction to generically represent object proposals. However, their use for temporal tasks like video segmentation poses two questions: 1) How to process frames sequentially and propagate object queries seamlessly across frames. Using independent object queries per frame doesn’t permit tracking, and requires post-processing. 2) How to produce temporally consistent, yet expressive object queries that model both appearance and position changes. Using the entire video at once doesn’t capture position changes and doesn’t scale to long videos. As one answer to both questions we propose ‘context-aware relative object queries’, which are continuously propagated frame-by-frame. They seamlessly track objects and deal with occlusion and re-appearance of objects, without post-processing. Further, we find context-aware relative object queries better capture position changes of objects in motion. We evaluate the proposed approach across three challenging tasks: video instance segmentation, multi-object tracking and segmentation, and video panoptic segmentation. Using the same approach and architecture, we match or surpass state-of-the art results on the diverse and challenging OVIS, Youtube-VIS, Cityscapes-VPS, MOTS 2020 and KITTI-MOTS data.

Poster
Jue Wang · Wentao Zhu · Pichao Wang · Xiang Yu · Linda Liu · Mohamed Omar · Raffay Hamid

[ West Building Exhibit Halls ABC ]

Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video …

Poster
Xitong Yang · Fu-Jen Chu · Matt Feiszli · Raghav Goyal · Lorenzo Torresani · Du Tran

[ West Building Exhibit Halls ABC ]

Egocentric videos are often available in the form of uninterrupted, uncurated long videos capturing the camera wearers’ daily life activities.Understanding these videos requires models to be able to reason about activities, objects, and their interactions. However, current video benchmarks study these problems independently and under short, curated clips. In contrast, real-world applications, e.g., AR assistants, require bundling these problems for both model development and evaluation. In this paper, we propose to study these problems in a joint framework for long video understanding. Our contributions are three-fold. First, we propose an integrated framework, namely Relational Space-Time Query (ReST), for evaluating video understanding models via templated spatiotemporal queries. Second, we introduce two new benchmarks, ReST-ADL and ReST-Ego4D, which augment the existing egocentric video datasets with abundant query annotations generated by the ReST framework. Finally, we present a set of baselines and in-depth analysis on the two benchmarks and provide insights about the query tasks. We view our integrated framework and benchmarks as a step towards comprehensive, multi-step reasoning in long videos, and believe it will facilitate the development of next generations of video understanding models.

Poster
Changan Chen · Alexander Richard · Roman Shapovalov · Vamsi Krishna Ithapu · Natalia Neverova · Kristen Grauman · Andrea Vedaldi

[ West Building Exhibit Halls ABC ]

We introduce the novel-view acoustic synthesis (NVAS) task: given the sight and sound observed at a source viewpoint, can we synthesize the sound of that scene from an unseen target viewpoint? We propose a neural rendering approach: Visually-Guided Acoustic Synthesis (ViGAS) network that learns to synthesize the sound of an arbitrary point in space by analyzing the input audio-visual cues. To benchmark this task, we collect two first-of-their-kind large-scale multi-view audio-visual datasets, one synthetic and one real. We show that our model successfully reasons about the spatial cues and synthesizes faithful audio on both datasets. To our knowledge, this work represents the very first formulation, dataset, and approach to solve the novel-view acoustic synthesis task, which has exciting potential applications ranging from AR/VR to art and design. Unlocked by this work, we believe that the future of novel-view synthesis is in multi-modal learning from videos.

Poster
Weixuan Sun · Jiayi Zhang · Jianyuan Wang · Zheyuan Liu · Yiran Zhong · Tianpeng Feng · Yandong Guo · Yanhao Zhang · Nick Barnes

[ West Building Exhibit Halls ABC ]

Self-supervised audio-visual source localization aims to locate sound-source objects in video frames without extra annotations. Recent methods often approach this goal with the help of contrastive learning, which assumes only the audio and visual contents from the same video are positive samples for each other. However, this assumption would suffer from false negative samples in real-world training. For example, for an audio sample, treating the frames from the same audio class as negative samples may mislead the model and therefore harm the learned representations (e.g., the audio of a siren wailing may reasonably correspond to the ambulances in multiple images). Based on this observation, we propose a new learning strategy named False Negative Aware Contrastive (FNAC) to mitigate the problem of misleading the training with such false negative samples. Specifically, we utilize the intra-modal similarities to identify potentially similar samples and construct corresponding adjacency matrices to guide contrastive learning. Further, we propose to strengthen the role of true negative samples by explicitly leveraging the visual features of sound sources to facilitate the differentiation of authentic sounding source regions. FNAC achieves state-of-the-art performances on Flickr-SoundNet, VGG-Sound, and AVSBench, which demonstrates the effectiveness of our method in mitigating the false negative issue. …

Poster
Kim Sung-Bin · Arda Senocak · Hyunwoo Ha · Andrew Owens · Tae-Hyun Oh

[ West Building Exhibit Halls ABC ]

How does audio describe the world around us? In this paper, we propose a method for generating an image of a scene from sound. Our method addresses the challenges of dealing with the large gaps that often exist between sight and sound. We design a model that works by scheduling the learning procedure of each model component to associate audio-visual modalities despite their information gaps. The key idea is to enrich the audio features with visual information by learning to align audio to visual latent space. We translate the input audio to visual features, then use a pre-trained generator to produce an image. To further improve the quality of our generated images, we use sound source localization to select the audio-visual pairs that have strong cross-modal correlations. We obtain substantially better results on the VEGAS and VGGSound datasets than prior approaches. We also show that we can control our model’s predictions by applying simple manipulations to the input waveform, or to the latent space.

Poster
Junwen Xiong · Ganglai Wang · Peng Zhang · Wei Huang · Yufei Zha · Guangtao Zhai

[ West Building Exhibit Halls ABC ]

Incorporating the audio stream enables Video Saliency Prediction (VSP) to imitate the selective attention mechanism of human brain. By focusing on the benefits of joint auditory and visual information, most VSP methods are capable of exploiting semantic correlation between vision and audio modalities but ignoring the negative effects due to the temporal inconsistency of audio-visual intrinsics. Inspired by the biological inconsistency-correction within multi-sensory information, in this study, a consistency-aware audio-visual saliency prediction network (CASP-Net) is proposed, which takes a comprehensive consideration of the audio-visual semantic interaction and consistent perception. In addition a two-stream encoder for elegant association between video frames and corresponding sound source, a novel consistency-aware predictive coding is also designed to improve the consistency within audio and visual representations iteratively. To further aggregate the multi-scale audio-visual information, a saliency decoder is introduced for the final saliency map generation. Substantial experiments demonstrate that the proposed CASP-Net outperforms the other state-of-the-art methods on six challenging audio-visual eye-tracking datasets. For a demo of our system please see https://woshihaozhu.github.io/CASP-Net/.

Poster
Xuehao Gao · Shaoyi Du · Yang Wu · Yang Yang

[ West Building Exhibit Halls ABC ]

Encouraged by the effectiveness of encoding temporal dynamics within the frequency domain, recent human motion prediction systems prefer to first convert the motion representation from the original pose space into the frequency space. In this paper, we introduce two closer looks at effective frequency representation learning for robust motion prediction and summarize them as: decompose more and aggregate better. Motivated by these two insights, we develop two powerful units that factorize the frequency representation learning task with a novel decomposition-aggregation two-stage strategy: (1) frequency decomposition unit unweaves multi-view frequency representations from an input body motion by embedding its frequency features into multiple spaces; (2) feature aggregation unit deploys a series of intra-space and inter-space feature aggregation layers to collect comprehensive frequency representations from these spaces for robust human motion prediction. As evaluated on large-scale datasets, we develop a strong baseline model for the human motion prediction task that outperforms state-of-the-art methods by large margins: 8%~12% on Human3.6M, 3%~7% on CMU MoCap, and 7%~10% on 3DPW.

Poster
Bahar Aydemir · Ludo Hoffstetter · Tong Zhang · Mathieu Salzmann · Sabine Süsstrunk

[ West Building Exhibit Halls ABC ]

Deep saliency prediction algorithms complement the object recognition features, they typically rely on additional information such as scene context, semantic relationships, gaze direction, and object dissimilarity. However, none of these models consider the temporal nature of gaze shifts during image observation. We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals by exploiting human temporal attention patterns. Our approach locally modulates the saliency predictions by combining the learned temporal maps. Our experiments show that our method outperforms the state-of-the-art models, including a multi-duration saliency model, on the SALICON benchmark and CodeCharts1k dataset. Our code is publicly available on GitHub.

Poster
Fumiaki Sato · Ryo Hachiuma · Taiki Sekii

[ West Building Exhibit Halls ABC ]

This study investigates unsupervised anomaly action recognition, which identifies video-level abnormal-human-behavior events in an unsupervised manner without abnormal samples, and simultaneously addresses three limitations in the conventional skeleton-based approaches: target domain-dependent DNN training, robustness against skeleton errors, and a lack of normal samples. We present a unified, user prompt-guided zero-shot learning framework using a target domain-independent skeleton feature extractor, which is pretrained on a large-scale action recognition dataset. Particularly, during the training phase using normal samples, the method models the distribution of skeleton features of the normal actions while freezing the weights of the DNNs and estimates the anomaly score using this distribution in the inference phase. Additionally, to increase robustness against skeleton errors, we introduce a DNN architecture inspired by a point cloud deep learning paradigm, which sparsely propagates the features between joints. Furthermore, to prevent the unobserved normal actions from being misidentified as abnormal actions, we incorporate a similarity score between the user prompt embeddings and skeleton features aligned in the common space into the anomaly score, which indirectly supplements normal actions. On two publicly available datasets, we conduct experiments to test the effectiveness of the proposed method with respect to abovementioned limitations.

Poster
Xinyu Gong · Sreyas Mohan · Naina Dhingra · Jean-Charles Bazin · Yilei Li · Zhangyang Wang · Rakesh Ranjan

[ West Building Exhibit Halls ABC ]

In this paper, we study a novel problem in egocentric action recognition, which we term as “Multimodal Generalization” (MMG). MMG aims to study how systems can generalize when data from certain modalities is limited or even completely missing. We thoroughly investigate MMG in the context of standard supervised action recognition and the more challenging few-shot setting for learning new action categories. MMG consists of two novel scenarios, designed to support security, and efficiency considerations in real-world applications: (1) missing modality generalization where some modalities that were present during the train time are missing during the inference time, and (2) cross-modal zero-shot generalization, where the modalities present during the inference time and the training time are disjoint. To enable this investigation, we construct a new dataset MMG-Ego4D containing data points with video, audio, and inertial motion sensor (IMU) modalities. Our dataset is derived from Ego4D dataset, but processed and thoroughly re-annotated by human experts to facilitate research in the MMG problem. We evaluate a diverse array of models on MMG-Ego4D and propose new methods with improved generalization ability. In particular, we introduce a new fusion module with modality dropout training, contrastive-based alignment training, and a novel cross-modal prototypical loss for better …

Poster
Yuyang Wanyan · Xiaoshan Yang · Chaofan Chen · Changsheng Xu

[ West Building Exhibit Halls ABC ]

Recently, few-shot action recognition receives increasing attention and achieves remarkable progress. However, previous methods mainly rely on limited unimodal data (e.g., RGB frames) while the multimodal information remains relatively underexplored. In this paper, we propose a novel Active Multimodal Few-shot Action Recognition (AMFAR) framework, which can actively find the reliable modality for each sample based on task-dependent context information to improve few-shot reasoning procedure. In meta-training, we design an Active Sample Selection (ASS) module to organize query samples with large differences in the reliability of modalities into different groups based on modality-specific posterior distributions. In addition, we design an Active Mutual Distillation (AMD) module to capture discriminative task-specific knowledge from the reliable modality to improve the representation learning of unreliable modality by bidirectional knowledge distillation. In meta-test, we adopt Adaptive Multimodal Inference (AMI) module to adaptively fuse the modality-specific posterior distributions with a larger weight on the reliable modality. Extensive experimental results on four public benchmarks demonstrate that our model achieves significant improvements over existing unimodal and multimodal methods.

Poster
Kaiyuan Liu · Yunheng Li · Shenglan Liu · Chenwei Tan · Zihang Shao

[ West Building Exhibit Halls ABC ]

Timestamp supervised temporal action segmentation (TSTAS) is more cost-effective than fully supervised counterparts. However, previous approaches suffer from severe label bias due to over-reliance on sparse timestamp annotations, resulting in unsatisfactory performance. In this paper, we propose the Debiasing-TSTAS (D-TSTAS) framework by exploiting unannotated frames to alleviate this bias from two phases: 1) Initialization. To reduce the dependencies on annotated frames, we propose masked timestamp predictions (MTP) to ensure that initialized model captures more contextual information. 2) Refinement. To overcome the limitation of the expressiveness from sparsely annotated timestamps, we propose a center-oriented timestamp expansion (CTE) approach to progressively expand pseudo-timestamp groups which contain semantic-rich motion representation of action segments. Then, these pseudo-timestamp groups and the model output are used to iteratively generate pseudo-labels for refining the model in a fully supervised setup. We further introduce segmental confidence loss to enable the model to have high confidence predictions within the pseudo-timestamp groups and more accurate action boundaries. Our D-TSTAS outperforms the state-of-the-art TSTAS method as well as achieves competitive results compared with fully supervised approaches on three benchmark datasets.

Poster
Hyolim Kang · Hanjung Kim · Joungbin An · Minsu Cho · Seon Joo Kim

[ West Building Exhibit Halls ABC ]

Temporal Action Localization (TAL) methods typically operate on top of feature sequences from a frozen snippet encoder that is pretrained with the Trimmed Action Classification (TAC) tasks, resulting in a task discrepancy problem. While existing TAL methods mitigate this issue either by retraining the encoder with a pretext task or by end-to-end finetuning, they commonly require an overload of high memory and computation. In this work, we introduce Soft-Landing (SoLa) strategy, an efficient yet effective framework to bridge the transferability gap between the pretrained encoder and the downstream tasks by incorporating a light-weight neural network, i.e., a SoLa module, on top of the frozen encoder. We also propose an unsupervised training scheme for the SoLa module; it learns with inter-frame Similarity Matching that uses the frame interval as its supervisory signal, eliminating the need for temporal annotations. Experimental evaluation on various benchmarks for downstream TAL tasks shows that our method effectively alleviates the task discrepancy problem with remarkable computational efficiency.

Poster
Meng Cao · Fangyun Wei · Can Xu · Xiubo Geng · Long Chen · Can Zhang · Yuexian Zou · Tao Shen · Daxin Jiang

[ West Building Exhibit Halls ABC ]

Weakly-Supervised Video Grounding (WSVG) aims to localize events of interest in untrimmed videos with only video-level annotations. To date, most of the state-of-the-art WSVG methods follow a two-stage pipeline, i.e., firstly generating potential temporal proposals and then grounding with these proposal candidates. Despite the recent progress, existing proposal generation methods suffer from two drawbacks: 1) lack of explicit correspondence modeling; and 2) partial coverage of complex events. To this end, we propose a novel IteRative prOposal refiNement network (dubbed as IRON) to gradually distill the prior knowledge into each proposal and encourage proposals with more complete coverage. Specifically, we set up two lightweight distillation branches to uncover the cross-modal correspondence on both the semantic and conceptual levels. Then, an iterative Label Propagation (LP) strategy is devised to prevent the network from focusing excessively on the most discriminative events instead of the whole sentence content. Precisely, during each iteration, the proposal with the minimal distillation loss and its adjacent ones are regarded as the positive samples, which refines proposal confidence scores in a cascaded manner. Extensive experiments and ablation studies on two challenging WSVG datasets have attested to the effectiveness of our IRON.

Poster
Shixing Chen · Chun-Hao Liu · Xiang Hao · Xiaohan Nie · Maxim Arap · Raffay Hamid

[ West Building Exhibit Halls ABC ]

Understanding scenes in movies is crucial for a variety of applications such as video moderation, search, and recommendation. However, labeling individual scenes is a time-consuming process. In contrast, movie level metadata (e.g., genre, synopsis, etc.) regularly gets produced as part of the film production process, and is therefore significantly more commonly available. In this work, we propose a novel contrastive learning approach that uses movie metadata to learn a general-purpose scene representation. Specifically, we use movie metadata to define a measure of movie similarity, and use it during contrastive learning to limit our search for positive scene-pairs to only the movies that are considered similar to each other. Our learned scene representation consistently outperforms existing state-of-the-art methods on a diverse set of tasks evaluated using multiple benchmark datasets. Notably, our learned representation offers an average improvement of 7.9% on the seven classification tasks and 9.7% improvement on the two regression tasks in LVU dataset. Furthermore, using a newly collected movie dataset, we present comparative results of our scene representation on a set of video moderation tasks to demonstrate its generalizability on previously less explored tasks.

Poster
Hanoona Rasheed · Muhammad Uzair Khattak · Muhammad Maaz · Salman Khan · Fahad Shahbaz Khan

[ West Building Exhibit Halls ABC ]

Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a ‘bridge and prompt’ approach that first uses finetuning to bridge the domain gap and then learns prompts on language and vision side to adapt …

Poster
Ruyang Liu · Jingjia Huang · Ge Li · Jiashi Feng · Xinglong Wu · Thomas H. Li

[ West Building Exhibit Halls ABC ]

Image-text pretrained models, e.g., CLIP, have shown impressive general multi-modal knowledge learned from large-scale image-text data pairs, thus attracting increasing attention for their potential to improve visual representation learning in the video domain. In this paper, based on the CLIP model, we revisit temporal modeling in the context of image-to-video knowledge transferring, which is the key point for extending image-text pretrained models to the video domain. We find that current temporal modeling mechanisms are tailored to either high-level semantic-dominant tasks (e.g., retrieval) or low-level visual pattern-dominant tasks (e.g., recognition), and fail to work on the two cases simultaneously. The key difficulty lies in modeling temporal dependency while taking advantage of both high-level and low-level knowledge in CLIP model. To tackle this problem, we present Spatial-Temporal Auxiliary Network (STAN) -- a simple and effective temporal modeling mechanism extending CLIP model to diverse video tasks. Specifically, to realize both low-level and high-level knowledge transferring, STAN adopts a branch structure with decomposed spatial-temporal modules that enable multi-level CLIP features to be spatial-temporally contextualized. We evaluate our method on two representative video tasks: Video-Text Retrieval and Video Recognition. Extensive experiments demonstrate the superiority of our model over the state-of-the-art methods on various datasets, including …

Poster
Siteng Huang · Biao Gong · Yulin Pan · Jianwen Jiang · Yiliang Lv · Yuyuan Li · Donglin Wang

[ West Building Exhibit Halls ABC ]

Many recent studies leverage the pre-trained CLIP for text-video cross-modal retrieval by tuning the backbone with additional heavy modules, which not only brings huge computational burdens with much more parameters, but also leads to the knowledge forgetting from upstream models. In this work, we propose the VoP: Text-Video Co-operative Prompt Tuning for efficient tuning on the text-video retrieval task. The proposed VoP is an end-to-end framework with both video & text prompts introducing, which can be regarded as a powerful baseline with only 0.1% trainable parameters. Further, based on the spatio-temporal characteristics of videos, we develop three novel video prompt mechanisms to improve the performance with different scales of trainable parameters. The basic idea of the VoP enhancement is to model the frame position, frame context, and layer function with specific trainable prompts, respectively. Extensive experiments show that compared to full fine-tuning, the enhanced VoP achieves a 1.4% average R@1 gain across five text-video retrieval benchmarks with 6x less parameter overhead. The code will be available at https://github.com/bighuang624/VoP.

Poster
Lan Wang · Gaurav Mittal · Sandra Sajeev · Ye Yu · Matthew Hall · Vishnu Naresh Boddeti · Mei Chen

[ West Building Exhibit Halls ABC ]

Video temporal grounding (VTG) is the task of localizing a given natural language text query in an arbitrarily long untrimmed video. While the task involves untrimmed videos, all existing VTG methods leverage features from video backbones pretrained on trimmed videos. This is largely due to the lack of large-scale well-annotated VTG dataset to perform pretraining. As a result, the pretrained features lack a notion of temporal boundaries leading to the video-text alignment being less distinguishable between correct and incorrect locations. We present ProTéGé as the first method to perform VTG-based untrimmed pretraining to bridge the gap between trimmed pretrained backbones and downstream VTG tasks. ProTéGé reconfigures the HowTo100M dataset, with noisily correlated video-text pairs, into a VTG dataset and introduces a novel Video-Text Similarity-based Grounding Module and a pretraining objective to make pretraining robust to noise in HowTo100M. Extensive experiments on multiple datasets across downstream tasks with all variations of supervision validate that pretrained features from ProTéGé can significantly outperform features from trimmed pretrained backbones on VTG.

Poster
Yue Zhao · Ishan Misra · Philipp Krähenbühl · Rohit Girdhar

[ West Building Exhibit Halls ABC ]

We introduce LAVILA, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-language embedding learned contrastively with these narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LAVILA obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LAVILA trained with only half the narrations from the Ego4D dataset outperforms models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.

Poster
Jinpeng Wang · Yixiao Ge · Rui Yan · Yuying Ge · Kevin Qinghong Lin · Satoshi Tsutsui · Xudong Lin · Guanyu Cai · Jianping Wu · Ying Shan · Xiaohu Qie · Mike Zheng Shou

[ West Building Exhibit Halls ABC ]

Mainstream Video-Language Pre-training models consist of three parts, a video encoder, a text encoder, and a video-text fusion Transformer. They pursue better performance via utilizing heavier unimodal encoders or multimodal fusion Transformers, resulting in increased parameters with lower efficiency in downstream tasks. In this work, we for the first time introduce an end-to-end video-language model, namely all-in-one Transformer, that embeds raw video and textual signals into joint representations using a unified backbone architecture. We argue that the unique temporal information of video data turns out to be a key barrier hindering the design of a modality-agnostic Transformer. To overcome the challenge, we introduce a novel and effective token rolling operation to encode temporal representations from video clips in a non-parametric manner. The careful design enables the representation learning of both video-text multimodal inputs and unimodal inputs using a unified backbone model. Our pre-trained all-in-one Transformer is transferred to various downstream video-text tasks after fine-tuning, including text-video retrieval, video-question answering, multiple choice and visual commonsense reasoning. State-of-the-art performances with the minimal model FLOPs on nine datasets demonstrate the superiority of our method compared to the competitive counterparts.

Poster
Chao Xu · Junwei Zhu · Jiangning Zhang · Yue Han · Wenqing Chu · Ying Tai · Chengjie Wang · Zhifeng Xie · Yong Liu

[ West Building Exhibit Halls ABC ]

Recently, emotional talking face generation has received considerable attention. However, existing methods only adopt one-hot coding, image, or audio as emotion conditions, thus lacking flexible control in practical applications and failing to handle unseen emotion styles due to limited semantics. They either ignore the one-shot setting or the quality of generated faces. In this paper, we propose a more flexible and generalized framework. Specifically, we supplement the emotion style in text prompts and use an Aligned Multi-modal Emotion encoder to embed the text, image, and audio emotion modality into a unified space, which inherits rich semantic prior from CLIP. Consequently, effective multi-modal emotion space learning helps our method support arbitrary emotion modality during testing and could generalize to unseen emotion styles. Besides, an Emotion-aware Audio-to-3DMM Convertor is proposed to connect the emotion condition and the audio sequence to structural representation. A followed style-based High-fidelity Emotional Face generator is designed to generate arbitrary high-resolution realistic identities. Our texture generator hierarchically learns flow fields and animated faces in a residual manner. Extensive experiments demonstrate the flexibility and generalization of our method in emotion control and the effectiveness of high-quality face synthesis.

Poster
Wenhao Wu · Xiaohan Wang · Haipeng Luo · Jingdong Wang · Yi Yang · Wanli Ouyang

[ West Building Exhibit Halls ABC ]

Vision-language models (VLMs) pre-trained on large-scale image-text pairs have demonstrated impressive transferability on various visual tasks. Transferring knowledge from such powerful VLMs is a promising direction for building effective video recognition models. However, current exploration in this field is still limited. We believe that the greatest value of pre-trained VLMs lies in building a bridge between visual and textual domains. In this paper, we propose a novel framework called BIKE, which utilizes the cross-modal bridge to explore bidirectional knowledge: i) We introduce the Video Attribute Association mechanism, which leverages the Video-to-Text knowledge to generate textual auxiliary attributes for complementing video recognition. ii) We also present a Temporal Concept Spotting mechanism that uses the Text-to-Video expertise to capture temporal saliency in a parameter-free manner, leading to enhanced video representation. Extensive studies on six popular video datasets, including Kinetics-400 & 600, UCF-101, HMDB-51, ActivityNet and Charades, show that our method achieves state-of-the-art performance in various recognition scenarios, such as general, zero-shot, and few-shot video recognition. Our best model achieves a state-of-the-art accuracy of 88.6% on the challenging Kinetics-400 using the released CLIP model. The code is available at https://github.com/whwu95/BIKE.

Poster
Yong Li · Yuanzhi Wang · Zhen Cui

[ West Building Exhibit Halls ABC ]

Human multimodal emotion recognition (MER) aims to perceive human emotions via language, visual and acoustic modalities. Despite the impressive performance of previous MER approaches, the inherent multimodal heterogeneities still haunt and the contribution of different modalities varies significantly. In this work, we mitigate this issue by proposing a decoupled multimodal distillation (DMD) approach that facilitates flexible and adaptive crossmodal knowledge distillation, aiming to enhance the discriminative features of each modality. Specially, the representation of each modality is decoupled into two parts, i.e., modality-irrelevant/-exclusive spaces, in a self-regression manner. DMD utilizes a graph distillation unit (GD-Unit) for each decoupled part so that each GD can be performed in a more specialized and effective manner. A GD-Unit consists of a dynamic graph where each vertice represents a modality and each edge indicates a dynamic knowledge distillation. Such GD paradigm provides a flexible knowledge transfer manner where the distillation weights can be automatically learned, thus enabling diverse crossmodal knowledge transfer patterns. Experimental results show DMD consistently obtains superior performance than state-of-the-art MER methods. Visualization results show the graph edges in DMD exhibit meaningful distributional patterns w.r.t. the modality-irrelevant/-exclusive feature spaces. Codes are released at https://github.com/mdswyz/DMD.

Poster
Panos Achlioptas · Maks Ovsjanikov · Leonidas Guibas · Sergey Tulyakov

[ West Building Exhibit Halls ABC ]

In this work, we explore the space of emotional reactions induced by real-world images. For this, we first introduce a large-scale dataset that contains both categorical emotional reactions and free-form textual explanations for 85,007 publicly available images, analyzed by 6,283 annotators who were asked to indicate and explain how and why they felt when observing a particular image, with a total of 526,749 responses. Although emotional reactions are subjective and sensitive to context (personal mood, social status, past experiences) -- we show that there is significant common ground to capture emotional responses with a large support in the subject population. In light of this observation, we ask the following questions: i) Can we develop neural networks that provide plausible affective responses to real-world visual data explained with language? ii) Can we steer such methods towards producing explanations with varying degrees of pragmatic language, justifying different emotional reactions by grounding them in the visual stimulus? Finally, iii) How to evaluate the performance of such methods for this novel task? In this work, we take the first steps in addressing all of these questions, paving the way for more human-centric and emotionally-aware image analysis systems. Our code and data are publicly available …

Poster
Zhao Xie · Tian Gao · Kewei Wu · Jiao Chang

[ West Building Exhibit Halls ABC ]

The causality relation modeling remains a challenging task for group activity recognition. The causality relations describe the influence of some actors (cause actors) on other actors (effect actors). Most existing graph models focus on learning the actor relation with synchronous temporal features, which is insufficient to deal with the causality relation with asynchronous temporal features. In this paper, we propose an Actor-Centric Causality Graph Model, which learns the asynchronous temporal causality relation with three modules, i.e., an asynchronous temporal causality relation detection module, a causality feature fusion module, and a causality relation graph inference module. First, given a centric actor and correlative actor, we analyze their influences to detect causality relation. We estimate the self influence of the centric actor with self regression. We estimate the correlative influence from the correlative actor to the centric actor with correlative regression, which uses asynchronous features at different timestamps. Second, we synchronize the two action features by estimating the temporal delay between the cause action and the effect action. The synchronized features are used to enhance the feature of the effect action with a channel-wise fusion. Third, we describe the nodes (actors) with causality features and learn the edges by fusing the causality …

Poster
Mengyin Liu · Jie Jiang · Chao Zhu · Xu-Cheng Yin

[ West Building Exhibit Halls ABC ]

Detecting pedestrians accurately in urban scenes is significant for realistic applications like autonomous driving or video surveillance. However, confusing human-like objects often lead to wrong detections, and small scale or heavily occluded pedestrians are easily missed due to their unusual appearances. To address these challenges, only object regions are inadequate, thus how to fully utilize more explicit and semantic contexts becomes a key problem. Meanwhile, previous context-aware pedestrian detectors either only learn latent contexts with visual clues, or need laborious annotations to obtain explicit and semantic contexts. Therefore, we propose in this paper a novel approach via Vision-Language semantic self-supervision for context-aware Pedestrian Detection (VLPD) to model explicitly semantic contexts without any extra annotations. Firstly, we propose a self-supervised Vision-Language Semantic (VLS) segmentation method, which learns both fully-supervised pedestrian detection and contextual segmentation via self-generated explicit labels of semantic classes by vision-language models. Furthermore, a self-supervised Prototypical Semantic Contrastive (PSC) learning method is proposed to better discriminate pedestrians and other classes, based on more explicit and semantic contexts obtained from VLS. Extensive experiments on popular benchmarks show that our proposed VLPD achieves superior performances over the previous state-of-the-arts, particularly under challenging circumstances like small scale and heavy occlusion. Code is …

Poster
Jiazhao Zhang · Liu Dai · Fanpeng Meng · Qingnan Fan · Xuelin Chen · Kai Xu · He Wang

[ West Building Exhibit Halls ABC ]

Object goal navigation (ObjectNav) in unseen environments is a fundamental task for Embodied AI. Agents in existing works learn ObjectNav policies based on 2D maps, scene graphs, or image sequences. Considering this task happens in 3D space, a 3D-aware agent can advance its ObjectNav capability via learning from fine-grained spatial information. However, leveraging 3D scene representation can be prohibitively unpractical for policy learning in this floor-level task, due to low sample efficiency and expensive computational cost. In this work, we propose a framework for the challenging 3D-aware ObjectNav based on two straightforward sub-policies. The two sub-polices, namely corner-guided exploration policy and category-aware identification policy, simultaneously perform by utilizing online fused 3D points as observation. Through extensive experiments, we show that this framework can dramatically improve the performance in ObjectNav through learning from 3D scene representation. Our framework achieves the best performance among all modular-based methods on the Matterport3D and Gibson datasets while requiring (up to30x) less computational cost for training. The code will be released to benefit the community.

Poster
Minyoung Hwang · Jaeyeon Jeong · Minsoo Kim · Yoonseon Oh · Songhwai Oh

[ West Building Exhibit Halls ABC ]

The main challenge in vision-and-language navigation (VLN) is how to understand natural-language instructions in an unseen environment. The main limitation of conventional VLN algorithms is that if an action is mistaken, the agent fails to follow the instructions or explores unnecessary regions, leading the agent to an irrecoverable path. To tackle this problem, we propose Meta-Explore, a hierarchical navigation method deploying an exploitation policy to correct misled recent actions. We show that an exploitation policy, which moves the agent toward a well-chosen local goal among unvisited but observable states, outperforms a method which moves the agent to a previously visited state. We also highlight the demand for imagining regretful explorations with semantically meaningful clues. The key to our approach is understanding the object placements around the agent in spectral-domain. Specifically, we present a novel visual representation, called scene object spectrum (SOS), which performs category-wise 2D Fourier transform of detected objects. Combining exploitation policy and SOS features, the agent can correct its path by choosing a promising local goal. We evaluate our method in three VLN benchmarks: R2R, SOON, and REVERIE. Meta-Explore outperforms other baselines and shows significant generalization performance. In addition, local goal search using the proposed spectral-domain SOS features …

Poster
Santhosh Kumar Ramakrishnan · Ziad Al-Halah · Kristen Grauman

[ West Building Exhibit Halls ABC ]

Searching long egocentric videos with natural language queries (NLQ) has compelling applications in augmented reality and robotics, where a fluid index into everything that a person (agent) has seen before could augment human memory and surface relevant information on demand. However, the structured nature of the learning problem (free-form text query inputs, localized video temporal window outputs) and its needle-in-a-haystack nature makes it both technically challenging and expensive to supervise. We introduce Narrations-as-Queries (NaQ), a data augmentation strategy that transforms standard video-text narrations into training data for a video query localization model. Validating our idea on the Ego4D benchmark, we find it has tremendous impact in practice. NaQ improves multiple top models by substantial margins (even doubling their accuracy), and yields the very best results to date on the Ego4D NLQ challenge, soundly outperforming all challenge winners in the CVPR and ECCV 2022 competitions and topping the current public leaderboard. Beyond achieving the state-of-the-art for NLQ, we also demonstrate unique properties of our approach such as the ability to perform zero-shot and few-shot NLQ, and improved performance on queries about long-tail object categories. Code and models: http://vision.cs.utexas.edu/projects/naq.

Poster
Yao Mu · Shunyu Yao · Mingyu Ding · Ping Luo · Chuang Gan

[ West Building Exhibit Halls ABC ]

Embodied control requires agents to leverage multi-modal pre-training to quickly learn how to act in new environments, where video demonstrations contain visual and motion details needed for low-level perception and control, and language instructions support generalization with abstract, symbolic structures. While recent approaches apply contrastive learning to force alignment between the two modalities, we hypothesize better modeling their complementary differences can lead to more holistic representations for downstream adaption. To this end, we propose Emergent Communication for Embodied Control (EC^2), a novel scheme to pre-train video-language representations for few-shot embodied control. The key idea is to learn an unsupervised “language” of videos via emergent communication, which bridges the semantics of video details and structures of natural language. We learn embodied representations of video trajectories, emergent language, and natural language using a language model, which is then used to finetune a lightweight policy network for downstream control. Through extensive experiments in Metaworld and Franka Kitchen embodied benchmarks, EC^2 is shown to consistently outperform previous contrastive learning methods for both videos and texts as task inputs. Further ablations confirm the importance of the emergent language, which is beneficial for both video and language learning, and significantly superior to using pre-trained video captions. …

Poster
Jingyi Xu · Tushar Vaidya · Yufei Wu · Saket Chandra · Zhangsheng Lai · Kai Fong Ernest Chong

[ West Building Exhibit Halls ABC ]

We introduce algebraic machine reasoning, a new reasoning framework that is well-suited for abstract reasoning. Effectively, algebraic machine reasoning reduces the difficult process of novel problem-solving to routine algebraic computation. The fundamental algebraic objects of interest are the ideals of some suitably initialized polynomial ring. We shall explain how solving Raven’s Progressive Matrices (RPMs) can be realized as computational problems in algebra, which combine various well-known algebraic subroutines that include: Computing the Gröbner basis of an ideal, checking for ideal containment, etc. Crucially, the additional algebraic structure satisfied by ideals allows for more operations on ideals beyond set-theoretic operations. Our algebraic machine reasoning framework is not only able to select the correct answer from a given answer set, but also able to generate the correct answer with only the question matrix given. Experiments on the I-RAVEN dataset yield an overall 93.2% accuracy, which significantly outperforms the current state-of-the-art accuracy of 77.0% and exceeds human performance at 84.4% accuracy.

Poster
Sergio Tascon-Morales · Pablo Márquez-Neila · Raphael Sznitman

[ West Building Exhibit Halls ABC ]

Despite considerable recent progress in Visual Question Answering (VQA) models, inconsistent or contradictory answers continue to cast doubt on their true reasoning capabilities. However, most proposed methods use indirect strategies or strong assumptions on pairs of questions and answers to enforce model consistency. Instead, we propose a novel strategy intended to improve model performance by directly reducing logical inconsistencies. To do this, we introduce a new consistency loss term that can be used by a wide range of the VQA models and which relies on knowing the logical relation between pairs of questions and answers. While such information is typically not available in VQA datasets, we propose to infer these logical relations using a dedicated language model and use these in our proposed consistency loss function. We conduct extensive experiments on the VQA Introspect and DME datasets and show that our method brings improvements to state-of-the-art VQA models while being robust across different architectures and settings.

Poster
Shi Chen · Qi Zhao

[ West Building Exhibit Halls ABC ]

Humans have the innate capability to answer diverse questions, which is rooted in the natural ability to correlate different concepts based on their semantic relationships and decompose difficult problems into sub-tasks. On the contrary, existing visual reasoning methods assume training samples that capture every possible object and reasoning problem, and rely on black-boxed models that commonly exploit statistical priors. They have yet to develop the capability to address novel objects or spurious biases in real-world scenarios, and also fall short of interpreting the rationales behind their decisions. Inspired by humans’ reasoning of the visual world, we tackle the aforementioned challenges from a compositional perspective, and propose an integral framework consisting of a principled object factorization method and a novel neural module network. Our factorization method decomposes objects based on their key characteristics, and automatically derives prototypes that represent a wide range of objects. With these prototypes encoding important semantics, the proposed network then correlates objects by measuring their similarity on a common semantic space and makes decisions with a compositional reasoning process. It is capable of answering questions with diverse objects regardless of their availability during training, and overcoming the issues of biased question-answer distributions. In addition to the enhanced …

Poster
Gi-Cheon Kang · Sungdong Kim · Jin-Hwa Kim · Donghyun Kwak · Byoung-Tak Zhang

[ West Building Exhibit Halls ABC ]

Visual dialog (VisDial) is a task of answering a sequence of questions grounded in an image, using the dialog history as context. Prior work has trained the dialog agents solely on VisDial data via supervised learning or leveraged pre-training on related vision-and-language datasets. This paper presents a semi-supervised learning approach for visually-grounded dialog, called Generative Self-Training (GST), to leverage unlabeled images on the Web. Specifically, GST first retrieves in-domain images through out-of-distribution detection and generates synthetic dialogs regarding the images via multimodal conditional text generation. GST then trains a dialog agent on the synthetic and the original VisDial data. As a result, GST scales the amount of training data up to an order of magnitude that of VisDial (1.2M to 12.9M QA data). For robust training of the synthetic dialogs, we also propose perplexity-based data selection and multimodal consistency regularization. Evaluation on VisDial v1.0 and v0.9 datasets shows that GST achieves new state-of-the-art results on both datasets. We further observe the robustness of GST against both visual and textual adversarial attacks. Finally, GST yields strong performance gains in the low-data regime. Code is available at https://github.com/gicheonkang/gst-visdial.

Poster
Hantao Yao · Rui Zhang · Changsheng Xu

[ West Building Exhibit Halls ABC ]

Prompt tuning is an effective way to adapt the pretrained visual-language model (VLM) to the downstream task using task-related textual tokens. Representative CoOp-based works combine the learnable textual tokens with the class tokens to obtain specific textual knowledge. However, the specific textual knowledge has worse generalizable to the unseen classes because it forgets the essential general textual knowledge having a strong generalization ability. To tackle this issue, we introduce a novel Knowledge-guided Context Optimization (KgCoOp) to enhance the generalization ability of the learnable prompt for unseen classes. To remember the essential general knowledge, KgCoOp constructs a regularization term to ensure that the essential general textual knowledge can be embedded into the special textual knowledge generated by the learnable prompt. Especially, KgCoOp minimizes the discrepancy between the textual embeddings generated by learned prompts and the hand-crafted prompts. Finally, adding the KgCoOp upon the contrastive loss can make a discriminative prompt for both seen and unseen tasks. Extensive evaluation of several benchmarks demonstrates that the proposed Knowledge-guided Context Optimization is an efficient method for prompt tuning, i.e., achieves better performance with less training time.

Poster
Hyeongjun Kwon · Taeyong Song · Somi Jeong · Jin Kim · Jinhyun Jang · Kwanghoon Sohn

[ West Building Exhibit Halls ABC ]

Recent progress in deterministic prompt learning has become a promising alternative to various downstream vision tasks, enabling models to learn powerful visual representations with the help of pre-trained vision-language models. However, this approach results in limited performance for dense prediction tasks that require handling more complex and diverse objects, since a single and deterministic description cannot sufficiently represent the entire image. In this paper, we present a novel probabilistic prompt learning to fully exploit the vision-language knowledge in dense prediction tasks. First, we introduce learnable class-agnostic attribute prompts to describe universal attributes across the object class. The attributes are combined with class information and visual-context knowledge to define the class-specific textual distribution. Text representations are sampled and used to guide the dense prediction task using the probabilistic pixel-text matching loss, enhancing the stability and generalization capability of the proposed method. Extensive experiments on different dense prediction tasks and ablation studies demonstrate the effectiveness of our proposed method.

Poster
Morris Alper · Michael Fiman · Hadar Averbuch-Elor

[ West Building Exhibit Halls ABC ]

Most humans use visual imagination to understand and reason about language, but models such as BERT reason about language using knowledge acquired during text-only pretraining. In this work, we investigate whether vision-and-language pretraining can improve performance on text-only tasks that involve implicit visual reasoning, focusing primarily on zero-shot probing methods. We propose a suite of visual language understanding (VLU) tasks for probing the visual reasoning abilities of text encoder models, as well as various non-visual natural language understanding (NLU) tasks for comparison. We also contribute a novel zero-shot knowledge probing method, Stroop probing, for applying models such as CLIP to text-only tasks without needing a prediction head such as the masked language modelling head of models like BERT. We show that SOTA multimodally trained text encoders outperform unimodally trained text encoders on the VLU tasks while being underperformed by them on the NLU tasks, lending new context to previously mixed results regarding the NLU capabilities of multimodal models. We conclude that exposure to images during pretraining affords inherent visual reasoning knowledge that is reflected in language-only tasks that require implicit visual reasoning. Our findings bear importance in the broader context of multimodal learning, providing principled guidelines for the choice of …

Poster
Yatai Ji · Rongcheng Tu · Jie Jiang · Weijie Kong · Chengfei Cai · Wenzhe Zhao · Hongfa Wang · Yujiu Yang · Wei Liu

[ West Building Exhibit Halls ABC ]

Cross-modal alignment is essential for vision-language pre-training (VLP) models to learn the correct corresponding information across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-to-local alignment. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in a limited cross-modal alignment ability of global representations. Therefore, in this paper, we propose a novel Semantic Completion Learning (SCL) task, complementary to existing masked modeling tasks, to facilitate global-to-local alignment. Specifically, the SCL task complements the missing semantics of masked data by capturing the corresponding information from the other modality, promoting learning more representative global features which have a great impact on the performance of downstream tasks. Moreover, we present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text …

Poster
Joya Chen · Difei Gao · Kevin Qinghong Lin · Mike Zheng Shou

[ West Building Exhibit Halls ABC ]

Humans excel at learning from expert demonstrations and solving their own problems. To equip intelligent robots and assistants, such as AR glasses, with this ability, it is essential to ground human hand interactions (i.e., affordances) from demonstration videos and apply them to a target image like a user’s AR glass view. The video-to-image affordance grounding task is challenging due to (1) the need to predict fine-grained affordances, and (2) the limited training data, which inadequately covers video-image discrepancies and negatively impacts grounding. To tackle them, we propose Affordance Transformer (Afformer), which has a fine-grained transformer-based decoder that gradually refines affordance grounding. Moreover, we introduce Mask Affordance Hand (MaskAHand), a self-supervised pretraining technique for synthesizing video-image data and simulating context changes, enhancing affordance grounding across video-image discrepancies. Afformer with MaskAHand pre-training achieves state-of-the-art performance on multiple benchmarks, including a substantial 37% improvement on the OPRA dataset. Code is made available at https://github.com/showlab/afformer.

Poster
Hongchen Luo · Wei Zhai · Jing Zhang · Yang Cao · Dacheng Tao

[ West Building Exhibit Halls ABC ]

Perceiving potential “action possibilities” (i.e., affordance) regions of images and learning interactive functionalities of objects from human demonstration is a challenging task due to the diversity of human-object interactions. Prevailing affordance learning algorithms often adopt the label assignment paradigm and presume that there is a unique relationship between functional region and affordance label, yielding poor performance when adapting to unseen environments with large appearance variations. In this paper, we propose to leverage interactive affinity for affordance learning, i.e., extracting interactive affinity from human-object interaction and transferring it to non-interactive objects. Interactive affinity, which represents the contacts between different parts of the human body and local regions of the target object, can provide inherent cues of interconnectivity between humans and objects, thereby reducing the ambiguity of the perceived action possibilities. Specifically, we propose a pose-aided interactive affinity learning framework that exploits human pose to guide the network to learn the interactive affinity from human-object interactions. Particularly, a keypoint heuristic perception (KHP) scheme is devised to exploit the keypoint association of human pose to alleviate the uncertainties due to interaction diversities and contact occlusions. Besides, a contact-driven affordance learning (CAL) dataset is constructed by collecting and labeling over 5,000 images. Experimental results …

Poster
Ashish Seth · Mayur Hemani · Chirag Agarwal

[ West Building Exhibit Halls ABC ]

Large pre-trained vision-language models (VLMs) reduce the time for developing predictive models for various vision-grounded language downstream tasks by providing rich, adaptable image and text representations. However, these models suffer from societal biases owing to the skewed distribution of various identity groups in the training data. These biases manifest as the skewed similarity between the representations for specific text concepts and images of people of different identity groups and, therefore, limit the usefulness of such models in real-world high-stakes applications. In this work, we present DeAR (Debiasing with Additive Residuals), a novel debiasing method that learns additive residual image representations to offset the original representations, ensuring fair output representations. In doing so, it reduces the ability of the representations to distinguish between the different identity groups. Further, we observe that the current fairness tests are performed on limited face image datasets that fail to indicate why a specific text concept should/should not apply to them. To bridge this gap and better evaluate DeAR, we introduce a new context-based bias benchmarking dataset - the Protected Attribute Tag Association (PATA) dataset for evaluating the fairness of large pre-trained VLMs. Additionally, PATA provides visual context for a diverse human population in different scenarios …

Poster
Xinlong Wang · Wen Wang · Yue Cao · Chunhua Shen · Tiejun Huang

[ West Building Exhibit Halls ABC ]

In-context learning, as a new paradigm in NLP, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. But in computer vision, the difficulties for in-context learning lie in that tasks vary significantly in the output representations, thus it is unclear how to define the general-purpose task prompts that the vision model can understand and transfer to out-of-domain tasks. In this work, we present Painter, a generalist model which addresses these obstacles with an “image”-centric solution, that is, to redefine the output of core vision tasks as images, and specify task prompts as also images. With this idea, our training process is extremely simple, which performs standard masked image modeling on the stitch of input and output image pairs. This makes the model capable of performing tasks conditioned on visible image patches. Thus, during inference, we can adopt a pair of input and output images from the same task as the input condition, to indicate which task to perform. Without bells and whistles, our generalist Painter can achieve competitive performance compared to well-established task-specific models, on seven representative vision tasks ranging from high-level visual understanding to low-level image processing. In addition, Painter significantly …

Poster
Songwei Ge · Shlok Mishra · Simon Kornblith · Chun-Liang Li · David Jacobs

[ West Building Exhibit Halls ABC ]

Although self-/un-supervised methods have led to rapid progress in visual representation learning, these methods generally treat objects and scenes using the same lens. In this paper, we focus on learning representations of objects and scenes that preserve the structure among them. Motivated by the observation that visually similar objects are close in the representation space, we argue that the scenes and objects should instead follow a hierarchical structure based on their compositionality. To exploit such a structure, we propose a contrastive learning framework where a Euclidean loss is used to learn object representations and a hyperbolic loss is used to encourage representations of scenes to lie close to representations of their constituent objects in hyperbolic space. This novel hyperbolic objective encourages the scene-object hypernymy among the representations by optimizing the magnitude of their norms. We show that when pretraining on the COCO and OpenImages datasets, the hyperbolic loss improves the downstream performance of several baselines across multiple datasets and tasks, including image classification, object detection, and semantic segmentation. We also show that the properties of the learned representations allow us to solve various vision tasks that involve the interaction between scenes and objects in a zero-shot fashion.

Poster
Subhadeep Koley · Ayan Kumar Bhunia · Aneeshan Sain · Pinaki Nath Chowdhury · Tao Xiang · Yi-Zhe Song

[ West Building Exhibit Halls ABC ]

Given an abstract, deformed, ordinary sketch from untrained amateurs like you and me, this paper turns it into a photorealistic image - just like those shown in Fig. 1(a), all non-cherry-picked. We differ significantly from prior art in that we do not dictate an edgemap-like sketch to start with, but aim to work with abstract free-hand human sketches. In doing so, we essentially democratise the sketch-to-photo pipeline, “picturing” a sketch regardless of how good you sketch. Our contribution at the outset is a decoupled encoder-decoder training paradigm, where the decoder is a StyleGAN trained on photos only. This importantly ensures that generated results are always photorealistic. The rest is then all centred around how best to deal with the abstraction gap between sketch and photo. For that, we propose an autoregressive sketch mapper trained on sketch-photo pairs that maps a sketch to the StyleGAN latent space. We further introduce specific designs to tackle the abstract nature of human sketches, including a fine-grained discriminative loss on the back of a trained sketch-photo retrieval model, and a partial-aware sketch augmentation strategy. Finally, we showcase a few downstream tasks our generation model enables, amongst them is showing how fine-grained sketch-based image retrieval, a …

Poster
Sagar Vaze · Nicolas Carion · Ishan Misra

[ West Building Exhibit Halls ABC ]

We argue that there are many notions of ‘similarity’ and that models, like humans, should be able to adapt to these dynamically. This contrasts with most representation learning methods, supervised or self-supervised, which learn a fixed embedding function and hence implicitly assume a single notion of similarity. For instance, models trained on ImageNet are biased towards object categories, while a user might prefer the model to focus on colors, textures or specific elements in the scene. In this paper, we propose the GeneCIS (‘genesis’) benchmark, which measures models’ ability to adapt to a range of similarity conditions. Extending prior work, our benchmark is designed for zero-shot evaluation only, and hence considers an open-set of similarity conditions. We find that baselines from powerful CLIP models struggle on GeneCIS and that performance on the benchmark is only weakly correlated with ImageNet accuracy, suggesting that simply scaling existing methods is not fruitful. We further propose a simple, scalable solution based on automatically mining information from existing image-caption datasets. We find our method offers a substantial boost over the baselines on GeneCIS, and further improves zero-shot performance on related image retrieval benchmarks. In fact, though evaluated zero-shot, our model surpasses state-of-the-art supervised models on …

Poster
Aneeshan Sain · Ayan Kumar Bhunia · Subhadeep Koley · Pinaki Nath Chowdhury · Soumitri Chattopadhyay · Tao Xiang · Yi-Zhe Song

[ West Building Exhibit Halls ABC ]

This paper advances the fine-grained sketch-based image retrieval (FG-SBIR) literature by putting forward a strong baseline that overshoots prior state-of-the art by ~11%. This is not via complicated design though, but by addressing two critical issues facing the community (i) the gold standard triplet loss does not enforce holistic latent space geometry, and (ii) there are never enough sketches to train a high accuracy model. For the former, we propose a simple modification to the standard triplet loss, that explicitly enforces separation amongst photos/sketch instances. For the latter, we put forward a novel knowledge distillation module can leverage photo data for model training. Both modules are then plugged into a novel plug-n-playable training paradigm that allows for more stable training. More specifically, for (i) we employ an intra-modal triplet loss amongst sketches to bring sketches of the same instance closer from others, and one more amongst photos to push away different photo instances while bringing closer a structurally augmented version of the same photo (offering a gain of 4-6%). To tackle (ii), we first pre-train a teacher on the large set of unlabelled photos over the aforementioned intra-modal photo triplet loss. Then we distill the contextual similarity present amongst the …

Poster
Chuan Tang · Xi Yang · Bojian Wu · Zhizhong Han · Yi Chang

[ West Building Exhibit Halls ABC ]

Shape-Text matching is an important task of high-level shape understanding. Current methods mainly represent a 3D shape as multiple 2D rendered views, which obviously can not be understood well due to the structural ambiguity caused by self-occlusion in the limited number of views. To resolve this issue, we directly represent 3D shapes as point clouds, and propose to learn joint embedding of point clouds and texts by bidirectional matching between parts from shapes and words from texts. Specifically, we first segment the point clouds into parts, and then leverage optimal transport method to match parts and words in an optimized feature space, where each part is represented by aggregating features of all points within it and each word is abstracted by its contextual information. We optimize the feature space in order to enlarge the similarities between the paired training samples, while simultaneously maximizing the margin between the unpaired ones. Experiments demonstrate that our method achieves a significant improvement in accuracy over the SOTAs on multi-modal retrieval tasks under the Text2Shape dataset. Codes are available at https://github.com/JLUtangchuan/Parts2Words.

Poster
Yueming Lyu · Tianwei Lin · Fu Li · Dongliang He · Jing Dong · Tieniu Tan

[ West Building Exhibit Halls ABC ]

Text-driven image manipulation remains challenging in training or inference flexibility. Conditional generative models depend heavily on expensive annotated training data. Meanwhile, recent frameworks, which leverage pre-trained vision-language models, are limited by either per text-prompt optimization or inference-time hyper-parameters tuning. In this work, we propose a novel framework named DeltaEdit to address these problems. Our key idea is to investigate and identify a space, namely delta image and text space that has well-aligned distribution between CLIP visual feature differences of two images and CLIP textual embedding differences of source and target texts. Based on the CLIP delta space, the DeltaEdit network is designed to map the CLIP visual features differences to the editing directions of StyleGAN at training phase. Then, in inference phase, DeltaEdit predicts the StyleGAN’s editing directions from the differences of the CLIP textual features. In this way, DeltaEdit is trained in a text-free manner. Once trained, it can well generalize to various text prompts for zero-shot inference without bells and whistles. Extensive experiments verify that our method achieves competitive performances with other state-of-the-arts, meanwhile with much better flexibility in both training and inference. Code is available at https://github.com/Yueming6568/DeltaEdit

Poster
Rui Shao · Tianxing Wu · Ziwei Liu

[ West Building Exhibit Halls ABC ]

Misinformation has become a pressing issue. Fake media, in both visual and textual forms, is widespread on the web. While various deepfake detection and text fake news detection methods have been proposed, they are only designed for single-modality forgery based on binary classification, let alone analyzing and reasoning subtle forgery traces across different modalities. In this paper, we highlight a new research problem for multi-modal fake media, namely Detecting and Grounding Multi-Modal Media Manipulation (DGM^4). DGM^4 aims to not only detect the authenticity of multi-modal media, but also ground the manipulated content (i.e., image bounding boxes and text tokens), which requires deeper reasoning of multi-modal media manipulation. To support a large-scale investigation, we construct the first DGM^4 dataset, where image-text pairs are manipulated by various approaches, with rich annotation of diverse manipulations. Moreover, we propose a novel HierArchical Multi-modal Manipulation rEasoning tRansformer (HAMMER) to fully capture the fine-grained interaction between different modalities. HAMMER performs 1) manipulation-aware contrastive learning between two uni-modal encoders as shallow manipulation reasoning, and 2) modality-aware cross-attention by multi-modal aggregator as deep manipulation reasoning. Dedicated manipulation detection and grounding heads are integrated from shallow to deep levels based on the interacted multi-modal information. Finally, we build an …

Poster
Sara Sarto · Manuele Barraco · Marcella Cornia · Lorenzo Baraldi · Rita Cucchiara

[ West Building Exhibit Halls ABC ]

The CLIP model has been recently proven to be very effective for a variety of cross-modal tasks, including the evaluation of captions generated from vision-and-language architectures. In this paper, we propose a new recipe for a contrastive-based evaluation metric for image captioning, namely Positive-Augmented Contrastive learning Score (PAC-S), that in a novel way unifies the learning of a contrastive visual-semantic space with the addition of generated images and text on curated data. Experiments spanning several datasets demonstrate that our new metric achieves the highest correlation with human judgments on both images and videos, outperforming existing reference-based metrics like CIDEr and SPICE and reference-free metrics like CLIP-Score. Finally, we test the system-level correlation of the proposed metric when considering popular image captioning approaches, and assess the impact of employing different cross-modal features. Our source code and trained models are publicly available at: https://github.com/aimagelab/pacscore.

Poster
Tal Shaharabany · Lior Wolf

[ West Building Exhibit Halls ABC ]

A phrase grounding model receives an input image and a text phrase and outputs a suitable localization map. We present an effective way to refine a phrase ground model by considering self-similarity maps extracted from the latent representation of the model’s image encoder. Our main insights are that these maps resemble localization maps and that by combining such maps, one can obtain useful pseudo-labels for performing self-training. Our results surpass, by a large margin, the state-of-the-art in weakly supervised phrase grounding. A similar gap in performance is obtained for a recently proposed downstream task called WWbL, in which the input image is given without any text. Our code is available as supplementary.

Poster
Roberto Dessì · Michele Bevilacqua · Eleonora Gualdoni · Nathanaël Carraz Rakotonirina · Francesca Franzon · Marco Baroni

[ West Building Exhibit Halls ABC ]

Neural captioners are typically trained to mimic human-generated references without optimizing for any specific communication goal, leading to problems such as the generation of vague captions. In this paper, we show that fine-tuning an out-of-the-box neural captioner with a self-supervised discriminative communication objective helps to recover a plain, visually descriptive language that is more informative about image contents. Given a target image, the system must learn to produce a description that enables an out-of-the-box text-conditioned image retriever to identify such image among a set of candidates. We experiment with the popular ClipCap captioner, also replicating the main results with BLIP. In terms of similarity to ground-truth human descriptions, the captions emerging from discriminative finetuning lag slightly behind those generated by the non-finetuned model, when the latter is trained and tested on the same caption dataset. However, when the model is used without further tuning to generate captions for out-of-domain datasets, our discriminatively-finetuned captioner generates descriptions that resemble human references more than those produced by the same captioner without finetuning. We further show that, on the Conceptual Captions dataset, discriminatively finetuned captions are more helpful than either vanilla ClipCap captions or ground-truth captions for human annotators tasked with an image discrimination …

Poster
Chenhao Zheng · Ayush Shrivastava · Andrew Owens

[ West Building Exhibit Halls ABC ]

We learn a visual representation that captures information about the camera that recorded a given photo. To do this, we train a multimodal embedding between image patches and the EXIF metadata that cameras automatically insert into image files. Our model represents this metadata by simply converting it to text and then processing it with a transformer. The features that we learn significantly outperform other self-supervised and supervised features on downstream image forensics and calibration tasks. In particular, we successfully localize spliced image regions “zero shot” by clustering the visual embeddings for all of the patches within an image.

Poster
Noa Garcia · Yusuke Hirota · Yankun Wu · Yuta Nakashima

[ West Building Exhibit Halls ABC ]

The increasing tendency to collect large and uncurated datasets to train vision-and-language models has raised concerns about fair representations. It is known that even small but manually annotated datasets, such as MSCOCO, are affected by societal bias. This problem, far from being solved, may be getting worse with data crawled from the Internet without much control. In addition, the lack of tools to analyze societal bias in big collections of images makes addressing the problem extremely challenging. Our first contribution is to annotate part of the Google Conceptual Captions dataset, widely used for training vision-and-language models, with four demographic and two contextual attributes. Our second contribution is to conduct a comprehensive analysis of the annotations, focusing on how different demographic groups are represented. Our last contribution lies in evaluating three prevailing vision-and-language tasks: image captioning, text-image CLIP embeddings, and text-to-image generation, showing that societal bias is a persistent problem in all of them.

Poster
Filip Radenovic · Abhimanyu Dubey · Abhishek Kadian · Todor Mihaylov · Simon Vandenhende · Yash Patel · Yi Wen · Vignesh Ramanathan · Dhruv Mahajan

[ West Building Exhibit Halls ABC ]

Vision-language models trained with contrastive learning on large-scale noisy data are becoming increasingly popular for zero-shot recognition problems. In this paper we improve the following three aspects of the contrastive pre-training pipeline: dataset noise, model initialization and the training objective. First, we propose a straightforward filtering strategy titled Complexity, Action, and Text-spotting (CAT) that significantly reduces dataset size, while achieving improved performance across zero-shot vision-language tasks. Next, we propose an approach titled Concept Distillation to leverage strong unimodal representations for contrastive training that does not increase training complexity while outperforming prior work. Finally, we modify the traditional contrastive alignment objective, and propose an importance-sampling approach to up-sample the importance of hard-negatives without adding additional complexity. On an extensive zero-shot benchmark of 29 tasks, our Distilled and Hard-negative Training (DiHT) approach improves on 20 tasks compared to the baseline. Furthermore, for few-shot linear probing, we propose a novel approach that bridges the gap between zero-shot and few-shot performance, substantially improving over prior work. Models are available at github.com/facebookresearch/diht.

Poster
Wenwen Yu · Yuliang Liu · Wei Hua · Deqiang Jiang · Bo Ren · Xiang Bai

[ West Building Exhibit Halls ABC ]

The recent large-scale Contrastive Language-Image Pretraining (CLIP) model has shown great potential in various downstream tasks via leveraging the pretrained vision and language knowledge. Scene text, which contains rich textual and visual information, has an inherent connection with a model like CLIP. Recently, pretraining approaches based on vision language models have made effective progresses in the field of text detection. In contrast to these works, this paper proposes a new method, termed TCM, focusing on Turning the CLIP Model directly for text detection without pretraining process. We demonstrate the advantages of the proposed TCM as follows: (1) The underlying principle of our framework can be applied to improve existing scene text detector. (2) It facilitates the few-shot training capability of existing methods, e.g., by using 10% of labeled data, we significantly improve the performance of the baseline method with an average of 22% in terms of the F-measure on 4 benchmarks. (3) By turning the CLIP model into existing scene text detection methods, we further achieve promising domain adaptation ability. The code will be publicly released at https://github.com/wenwenyu/TCM.

Poster
Xiangjie Sui · Yuming Fang · Hanwei Zhu · Shiqi Wang · Zhou Wang

[ West Building Exhibit Halls ABC ]

Scanpath prediction for 360° images aims to produce dynamic gaze behaviors based on the human visual perception mechanism. Most existing scanpath prediction methods for 360° images do not give a complete treatment of the time-dependency when predicting human scanpath, resulting in inferior performance and poor generalizability. In this paper, we present a scanpath prediction method for 360° images by designing a novel Deep Markov Model (DMM) architecture, namely ScanDMM. We propose a semantics-guided transition function to learn the nonlinear dynamics of time-dependent attentional landscape. Moreover, a state initialization strategy is proposed by considering the starting point of viewing, enabling the model to learn the dynamics with the correct “launcher”. We further demonstrate that our model achieves state-of-the-art performance on four 360° image databases, and exhibit its generalizability by presenting two applications of applying scanpath prediction models to other visual tasks - saliency detection and image quality assessment, expecting to provide profound insights into these fields.

Poster
Thomas Stegmüller · Tim Lebailly · Behzad Bozorgtabar · Tinne Tuytelaars · Jean-Philippe Thiran

[ West Building Exhibit Halls ABC ]

Learning dense visual representations without labels is an arduous task and more so from scene-centric data. We propose to tackle this challenging problem by proposing a Cross-view consistency objective with an Online Clustering mechanism (CrOC) to discover and segment the semantics of the views. In the absence of hand-crafted priors, the resulting method is more generalizable and does not require a cumbersome pre-processing step. More importantly, the clustering algorithm conjointly operates on the features of both views, thereby elegantly bypassing the issue of content not represented in both views and the ambiguous matching of objects from one crop to the other. We demonstrate excellent performance on linear and unsupervised segmentation transfer tasks on various datasets and similarly for video object segmentation. Our code and pre-trained models are publicly available at https://github.com/stegmuel/CrOC.

Poster
Runyu Ding · Jihan Yang · Chuhui Xue · Wenqing Zhang · Song Bai · Xiaojuan Qi

[ West Building Exhibit Halls ABC ]

Open-vocabulary scene understanding aims to localize and recognize unseen categories beyond the annotated label space. The recent breakthrough of 2D open-vocabulary perception is largely driven by Internet-scale paired image-text data with rich vocabulary concepts. However, this success cannot be directly transferred to 3D scenarios due to the inaccessibility of large-scale 3D-text pairs. To this end, we propose to distill knowledge encoded in pre-trained vision-language (VL) foundation models through captioning multi-view images from 3D, which allows explicitly associating 3D and semantic-rich captions. Further, to foster coarse-to-fine visual-semantic representation learning from captions, we design hierarchical 3D-caption pairs, leveraging geometric constraints between 3D scenes and multi-view images. Finally, by employing contrastive learning, the model learns language-aware embeddings that connect 3D and text for open-vocabulary tasks. Our method not only remarkably outperforms baseline methods by 25.8% ~ 44.7% hIoU and 14.5% ~ 50.4% hAP_{50} in open-vocabulary semantic and instance segmentation, but also shows robust transferability on challenging zero-shot domain transfer tasks. See the project website at https://dingry.github.io/projects/PLA.

Poster
Runnan Chen · Youquan Liu · Lingdong Kong · Xinge Zhu · Yuexin Ma · Yikang Li · Yuenan Hou · Yu Qiao · Wenping Wang

[ West Building Exhibit Halls ABC ]

Contrastive Language-Image Pre-training (CLIP) achieves promising results in 2D zero-shot and few-shot learning. Despite the impressive performance in 2D, applying CLIP to help the learning in 3D scene understanding has yet to be explored. In this paper, we make the first attempt to investigate how CLIP knowledge benefits 3D scene understanding. We propose CLIP2Scene, a simple yet effective framework that transfers CLIP knowledge from 2D image-text pre-trained models to a 3D point cloud network. We show that the pre-trained 3D network yields impressive performance on various downstream tasks, i.e., annotation-free and fine-tuning with labelled data for semantic segmentation. Specifically, built upon CLIP, we design a Semantic-driven Cross-modal Contrastive Learning framework that pre-trains a 3D network via semantic and spatial-temporal consistency regularization. For the former, we first leverage CLIP’s text semantics to select the positive and negative point samples and then employ the contrastive loss to train the 3D network. In terms of the latter, we force the consistency between the temporally coherent point cloud features and their corresponding image features. We conduct experiments on SemanticKITTI, nuScenes, and ScanNet. For the first time, our pre-trained network achieves annotation-free 3D semantic segmentation with 20.8% and 25.08% mIoU on nuScenes and ScanNet, respectively. …

Poster
Xiaoshi Wu · Feng Zhu · Rui Zhao · Hongsheng Li

[ West Building Exhibit Halls ABC ]

Open-vocabulary detection (OVD) is an object detection task aiming at detecting objects from novel categories beyond the base categories on which the detector is trained. Recent OVD methods rely on large-scale visual-language pre-trained models, such as CLIP, for recognizing novel objects. We identify the two core obstacles that need to be tackled when incorporating these models into detector training: (1) the distribution mismatch that happens when applying a VL-model trained on whole images to region recognition tasks; (2) the difficulty of localizing objects of unseen classes. To overcome these obstacles, we propose CORA, a DETR-style framework that adapts CLIP for Open-vocabulary detection by Region prompting and Anchor pre-matching. Region prompting mitigates the whole-to-region distribution gap by prompting the region features of the CLIP-based region classifier. Anchor pre-matching helps learning generalizable object localization by a class-aware matching mechanism. We evaluate CORA on the COCO OVD benchmark, where we achieve 41.7 AP50 on novel classes, which outperforms the previous SOTA by 2.4 AP50 even without resorting to extra training data. When extra training data is available, we train CORA+ on both ground-truth base-category annotations and additional pseudo bounding box labels computed by CORA. CORA+ achieves 43.1 AP50 on the COCO OVD benchmark …

Poster
María A. Bravo · Sudhanshu Mittal · Simon Ging · Thomas Brox

[ West Building Exhibit Halls ABC ]

Vision-language modeling has enabled open-vocabulary tasks where predictions can be queried using any text prompt in a zero-shot manner. Existing open-vocabulary tasks focus on object classes, whereas research on object attributes is limited due to the lack of a reliable attribute-focused evaluation benchmark. This paper introduces the Open-Vocabulary Attribute Detection (OVAD) task and the corresponding OVAD benchmark. The objective of the novel task and benchmark is to probe object-level attribute information learned by vision-language models. To this end, we created a clean and densely annotated test set covering 117 attribute classes on the 80 object classes of MS COCO. It includes positive and negative annotations, which enables open-vocabulary evaluation. Overall, the benchmark consists of 1.4 million annotations. For reference, we provide a first baseline method for open-vocabulary attribute detection. Moreover, we demonstrate the benchmark’s value by studying the attribute detection performance of several foundation models.

Poster
Tao Wang

[ West Building Exhibit Halls ABC ]

Open vocabulary object detection has been greately advanced by the recent development of vision-language pre-trained model, which helps recognizing the novel objects with only semantic categories. The prior works mainly focus on knowledge transferring to the object proposal classification and employ class-agnostic box and mask prediction. In this work, we propose CondHead, a principled dynamic network design to better generalize the box regression and mask segmentation for open vocabulary setting. The core idea is to conditionally parametrize the network heads on semantic embedding and thus the model is guided with class-specific knowledge to better detect novel categories. Specifically, CondHead is composed of two streams of network heads, the dynamically aggregated heads and dynamically generated heads. The former is instantiated with a set of static heads that are conditionally aggregated, these heads are optimized as experts and are expected to learn sophisticated prediction. The Latter is instantiated with dynamically generated parameters and encodes general class-specific information. With such conditional design, the detection model is bridged by the semantic embedding to offer strongly generalizable class-wise box and mask prediction. Our method brings significant improvement to the prior state-of-the-art open vocabulary object detection methods with very minor overhead, e.g., it surpasses a RegionClip …

Poster
Feng Liang · Bichen Wu · Xiaoliang Dai · Kunpeng Li · Yinan Zhao · Hang Zhang · Peizhao Zhang · Peter Vajda · Diana Marculescu

[ West Building Exhibit Halls ABC ]

Open-vocabulary semantic segmentation aims to segment an image into semantic regions according to text descriptions, which may not have been seen during training. Recent two-stage methods first generate class-agnostic mask proposals and then leverage pre-trained vision-language models, e.g., CLIP, to classify masked regions. We identify the performance bottleneck of this paradigm to be the pre-trained CLIP model, since it does not perform well on masked images. To address this, we propose to finetune CLIP on a collection of masked image regions and their corresponding text descriptions. We collect training data by mining an existing image-caption dataset (e.g., COCO Captions), using CLIP to match masked image regions to nouns in the image captions. Compared with the more precise and manually annotated segmentation labels with fixed classes (e.g., COCO-Stuff), we find our noisy but diverse dataset can better retain CLIP’s generalization ability. Along with finetuning the entire model, we utilize the “blank” areas in masked images using a method we dub mask prompt tuning. Experiments demonstrate mask prompt tuning brings significant improvement without modifying any weights of CLIP, and it can further improve a fully finetuned model. In particular, when trained on COCO and evaluated on ADE20K-150, our best model achieves 29.6% …

Poster
Muyang Yi · Quan Cui · Hao Wu · Cheng Yang · Osamu Yoshie · Hongtao Lu

[ West Building Exhibit Halls ABC ]

Text-supervised semantic segmentation is a novel research topic that allows semantic segments to emerge with image-text contrasting. However, pioneering methods could be subject to specifically designed network architectures. This paper shows that a vanilla contrastive language-image pre-training (CLIP) model is an effective text-supervised semantic segmentor by itself. First, we reveal that a vanilla CLIP is inferior to localization and segmentation due to its optimization being driven by densely aligning visual and language representations. Second, we propose the locality-driven alignment (LoDA) to address the problem, where CLIP optimization is driven by sparsely aligning local representations. Third, we propose a simple segmentation (SimSeg) framework. LoDA and SimSeg jointly ameliorate a vanilla CLIP to produce impressive semantic segmentation results. Our method outperforms previous state-of-the-art methods on PASCAL VOC 2012, PASCAL Context and COCO datasets by large margins. Code and models are available at github.com/muyangyi/SimSeg.

Poster
Haoran Geng · Helin Xu · Chengyang Zhao · Chao Xu · Li Yi · Siyuan Huang · He Wang

[ West Building Exhibit Halls ABC ]

For years, researchers have been devoted to generalizable object perception and manipulation, where cross-category generalizability is highly desired yet underexplored. In this work, we propose to learn such cross-category skills via Generalizable and Actionable Parts (GAParts). By identifying and defining 9 GAPart classes (lids, handles, etc.) in 27 object categories, we construct a large-scale part-centric interactive dataset, GAPartNet, where we provide rich, part-level annotations (semantics, poses) for 8,489 part instances on 1,166 objects. Based on GAPartNet, we investigate three cross-category tasks: part segmentation, part pose estimation, and part-based object manipulation. Given the significant domain gaps between seen and unseen object categories, we propose a robust 3D segmentation method from the perspective of domain generalization by integrating adversarial learning techniques. Our method outperforms all existing methods by a large margin, no matter on seen or unseen categories. Furthermore, with part segmentation and pose estimation results, we leverage the GAPart pose definition to design part-based manipulation heuristics that can generalize well to unseen object categories in both the simulator and the real world.

Poster
Chuwei Luo · Changxu Cheng · Qi Zheng · Cong Yao

[ West Building Exhibit Halls ABC ]

Visual information extraction (VIE) plays an important role in Document Intelligence. Generally, it is divided into two tasks: semantic entity recognition (SER) and relation extraction (RE). Recently, pre-trained models for documents have achieved substantial progress in VIE, particularly in SER. However, most of the existing models learn the geometric representation in an implicit way, which has been found insufficient for the RE task since geometric information is especially crucial for RE. Moreover, we reveal another factor that limits the performance of RE lies in the objective gap between the pre-training phase and the fine-tuning phase for RE. To tackle these issues, we propose in this paper a multi-modal framework, named GeoLayoutLM, for VIE. GeoLayoutLM explicitly models the geometric relations in pre-training, which we call geometric pre-training. Geometric pre-training is achieved by three specially designed geometry-related pre-training tasks. Additionally, novel relation heads, which are pre-trained by the geometric pre-training tasks and fine-tuned for RE, are elaborately designed to enrich and enhance the feature representation. According to extensive experiments on standard VIE benchmarks, GeoLayoutLM achieves highly competitive scores in the SER task and significantly outperforms the previous state-of-the-arts for RE (e.g.,the F1 score of RE on FUNSD is boosted from 80.35% to …

Poster
Anas Mahmoud · Jordan S. K. Hu · Tianshu Kuai · Ali Harakeh · Liam Paull · Steven L. Waslander

[ West Building Exhibit Halls ABC ]

An effective framework for learning 3D representations for perception tasks is distilling rich self-supervised image features via contrastive learning. However, image-to-point representation learning for autonomous driving datasets faces two main challenges: 1) the abundance of self-similarity, which results in the contrastive losses pushing away semantically similar point and image regions and thus disturbing the local semantic structure of the learned representations, and 2) severe class imbalance as pretraining gets dominated by over-represented classes. We propose to alleviate the self-similarity problem through a novel semantically tolerant image-to-point contrastive loss that takes into consideration the semantic distance between positive and negative image regions to minimize contrasting semantically similar point and image regions. Additionally, we address class imbalance by designing a class-agnostic balanced loss that approximates the degree of class imbalance through an aggregate sample-to-samples semantic similarity measure. We demonstrate that our semantically-tolerant contrastive loss with class balancing improves state-of-the-art 2D-to-3D representation learning in all evaluation settings on 3D semantic segmentation. Our method consistently outperforms state-of-the-art 2D-to-3D representation learning frameworks across a wide range of 2D self-supervised pretrained models.

Poster
Jiaqi Chen · Jiachen Lu · Xiatian Zhu · Li Zhang

[ West Building Exhibit Halls ABC ]

We present Generative Semantic Segmentation (GSS), a generative learning approach for semantic segmentation. Uniquely, we cast semantic segmentation as an image-conditioned mask generation problem. This is achieved by replacing the conventional per-pixel discriminative learning with a latent prior learning process. Specifically, we model the variational posterior distribution of latent variables given the segmentation mask. To that end, the segmentation mask is expressed with a special type of image (dubbed as maskige). This posterior distribution allows to generate segmentation masks unconditionally. To achieve semantic segmentation on a given image, we further introduce a conditioning network. It is optimized by minimizing the divergence between the posterior distribution of maskige (i.e., segmentation masks) and the latent prior distribution of input training images. Extensive experiments on standard benchmarks show that our GSS can perform competitively to prior art alternatives in the standard semantic segmentation setting, whilst achieving a new state of the art in the more challenging cross-domain setting.

Poster
Yixuan Sun · Yiwen Huang · Haijing Guo · Yuzhou Zhao · Runmin Wu · Yizhou Yu · Weifeng Ge · Wenqiang Zhang

[ West Building Exhibit Halls ABC ]

Semantic correspondence have built up a new way for object recognition. However current single-object matching schema can be hard for discovering commonalities for a category and far from the real-world recognition tasks. To fill this gap, we design the multi-instance semantic correspondence task which aims at constructing the correspondence between multiple objects in an image pair. To support this task, we build a multi-instance semantic correspondence (MISC) dataset from COCO Detection 2017 task called MISC210K. We construct our dataset as three steps: (1) category selection and data cleaning; (2) keypoint design based on 3D models and object description rules; (3) human-machine collaborative annotation. Following these steps, we select 34 classes of objects with 4,812 challenging images annotated via a well designed semi-automatic workflow, and finally acquire 218,179 image pairs with instance masks and instance-level keypoint pairs annotated. We design a dual-path collaborative learning pipeline to train instance-level co-segmentation task and fine-grained level correspondence task together. Benchmark evaluation and further ablation results with detailed analysis are provided with three future directions proposed. Our project is available on https://github.com/YXSUNMADMAX/MISC210K.

Poster
Yong Yang · Qiong Chen · Yuan Feng · Tianlin Huang

[ West Building Exhibit Halls ABC ]

Existing few-shot segmentation methods are based on the meta-learning strategy and extract instance knowledge from a support set and then apply the knowledge to segment target objects in a query set. However, the extracted knowledge is insufficient to cope with the variable intra-class differences since the knowledge is obtained from a few samples in the support set. To address the problem, we propose a multi-information aggregation network (MIANet) that effectively leverages the general knowledge, i.e., semantic word embeddings, and instance information for accurate segmentation. Specifically, in MIANet, a general information module (GIM) is proposed to extract a general class prototype from word embeddings as a supplement to instance information. To this end, we design a triplet loss that treats the general class prototype as an anchor and samples positive-negative pairs from local features in the support set. The calculated triplet loss can transfer semantic similarities among language identities from a word embedding space to a visual representation space. To alleviate the model biasing towards the seen training classes and to obtain multi-scale information, we then introduce a non-parametric hierarchical prior module (HPM) to generate unbiased instance-level information via calculating the pixel-level similarity between the support and query image features. Finally, …

Poster
Vignesh Ramanathan · Anmol Kalia · Vladan Petrovic · Yi Wen · Baixue Zheng · Baishan Guo · Rui Wang · Aaron Marquez · Rama Kovvuri · Abhishek Kadian · Amir Mousavi · Yiwen Song · Abhimanyu Dubey · Dhruv Mahajan

[ West Building Exhibit Halls ABC ]

Object models are gradually progressing from predicting just category labels to providing detailed descriptions of object instances. This motivates the need for large datasets which go beyond traditional object masks and provide richer annotations such as part masks and attributes. Hence, we introduce PACO: Parts and Attributes of Common Objects. It spans 75 object categories, 456 object-part categories and 55 attributes across image (LVIS) and video (Ego4D) datasets. We provide 641K part masks annotated across 260K object boxes, with roughly half of them exhaustively annotated with attributes as well. We design evaluation metrics and provide benchmark results for three tasks on the dataset: part mask segmentation, object and part attribute prediction and zero-shot instance detection. Dataset, models, and code are open-sourced at https://github.com/facebookresearch/paco.

Poster
Jang Hyun Cho · Philipp Krähenbühl · Vignesh Ramanathan

[ West Building Exhibit Halls ABC ]

We present a scalable framework to learn part segmentation from object instance labels. State-of-the-art instance segmentation models contain a surprising amount of part information. However, much of this information is hidden from plain view. For each object instance, the part information is noisy, inconsistent, and incomplete. PartDistillation transfers the part information of an instance segmentation model into a part segmentation model through self-supervised self-training on a large dataset. The resulting segmentation model is robust, accurate, and generalizes well. We evaluate the model on various part segmentation datasets. Our model outperforms supervised part segmentation in zero-shot generalization performance by a large margin. Our model outperforms when finetuned on target datasets compared to supervised counterpart and other baselines especially in few-shot regime. Finally, our model provides a wider coverage of rare parts when evaluated over 10K object classes. Code is at https://github.com/facebookresearch/PartDistillation.

Poster
Kehan Li · Zhennan Wang · Zesen Cheng · Runyi Yu · Yian Zhao · Guoli Song · Chang Liu · Li Yuan · Jie Chen

[ West Building Exhibit Halls ABC ]

Recently, self-supervised large-scale visual pre-training models have shown great promise in representing pixel-level semantic relationships, significantly promoting the development of unsupervised dense prediction tasks, e.g., unsupervised semantic segmentation (USS). The extracted relationship among pixel-level representations typically contains rich class-aware information that semantically identical pixel embeddings in the representation space gather together to form sophisticated concepts. However, leveraging the learned models to ascertain semantically consistent pixel groups or regions in the image is non-trivial since over/ under-clustering overwhelms the conceptualization procedure under various semantic distributions of different images. In this work, we investigate the pixel-level semantic aggregation in self-supervised ViT pre-trained models as image Segmentation and propose the Adaptive Conceptualization approach for USS, termed ACSeg. Concretely, we explicitly encode concepts into learnable prototypes and design the Adaptive Concept Generator (ACG), which adaptively maps these prototypes to informative concepts for each image. Meanwhile, considering the scene complexity of different images, we propose the modularity loss to optimize ACG independent of the concept number based on estimating the intensity of pixel pairs belonging to the same concept. Finally, we turn the USS task into classifying the discovered concepts in an unsupervised manner. Extensive experiments with state-of-the-art results demonstrate the effectiveness of the proposed …

Poster
Pau de Jorge · Riccardo Volpi · Philip H.S. Torr · Grégory Rogez

[ West Building Exhibit Halls ABC ]

Motivated by the increasing popularity of transformers in computer vision, in recent times there has been a rapid development of novel architectures. While in-domain performance follows a constant, upward trend, properties like robustness or uncertainty estimation are less explored -leaving doubts about advances in model reliability. Studies along these axes exist, but they are mainly limited to classification models. In contrast, we carry out a study on semantic segmentation, a relevant task for many real-world applications where model reliability is paramount. We analyze a broad variety of models, spanning from older ResNet-based architectures to novel transformers and assess their reliability based on four metrics: robustness, calibration, misclassification detection and out-of-distribution (OOD) detection. We find that while recent models are significantly more robust, they are not overall more reliable in terms of uncertainty estimation. We further explore methods that can come to the rescue and show that improving calibration can also help with other uncertainty metrics such as misclassification or OOD detection. This is the first study on modern segmentation models focused on both robustness and uncertainty estimation and we hope it will help practitioners and researchers interested in this fundamental vision task.

Poster
Yuan Wang · Rui Sun · Tianzhu Zhang

[ West Building Exhibit Halls ABC ]

Few-shot segmentation (FSS) aims to segment novel objects in a given query image with only a few annotated support images. However, most previous best-performing methods, whether prototypical learning methods or affinity learning methods, neglect to alleviate false matches caused by their own pixel-level correlation. In this work, we rethink how to mitigate the false matches from the perspective of representative reference features (referred to as buoys), and propose a novel adaptive buoys correlation (ABC) network to rectify direct pairwise pixel-level correlation, including a buoys mining module and an adaptive correlation module. The proposed ABC enjoys several merits. First, to learn the buoys well without any correspondence supervision, we customize the buoys mining module according to the three characteristics of representativeness, task awareness and resilience. Second, the proposed adaptive correlation module is responsible for further endowing buoy-correlation-based pixel matching with an adaptive ability. Extensive experimental results with two different backbones on two challenging benchmarks demonstrate that our ABC, as a general plugin, achieves consistent improvements over several leading methods on both 1-shot and 5-shot settings.

Poster
Ruihuang Li · Chenhang He · Yabin Zhang · Shuai Li · Liyi Chen · Lei Zhang

[ West Building Exhibit Halls ABC ]

Weakly supervised instance segmentation using only bounding box annotations has recently attracted much research attention. Most of the current efforts leverage low-level image features as extra supervision without explicitly exploiting the high-level semantic information of the objects, which will become ineffective when the foreground objects have similar appearances to the background or other objects nearby. We propose a new box-supervised instance segmentation approach by developing a Semantic-aware Instance Mask (SIM) generation paradigm. Instead of heavily relying on local pair-wise affinities among neighboring pixels, we construct a group of category-wise feature centroids as prototypes to identify foreground objects and assign them semantic-level pseudo labels. Considering that the semantic-aware prototypes cannot distinguish different instances of the same semantics, we propose a self-correction mechanism to rectify the falsely activated regions while enhancing the correct ones. Furthermore, to handle the occlusions between objects, we tailor the Copy-Paste operation for the weakly-supervised instance segmentation task to augment challenging training data. Extensive experimental results demonstrate the superiority of our proposed SIM approach over other state-of-the-art methods. The source code: https://github.com/lslrh/SIM.

Poster
Jia-Wen Xiao · Chang-Bin Zhang · Jiekang Feng · Xialei Liu · Joost van de Weijer · Ming-Ming Cheng

[ West Building Exhibit Halls ABC ]

Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.

Poster
Chao Shang · Hongliang Li · Fanman Meng · Qingbo Wu · Heqian Qiu · Lanxiao Wang

[ West Building Exhibit Halls ABC ]

Class-incremental semantic segmentation aims to incrementally learn new classes while maintaining the capability to segment old ones, and suffers catastrophic forgetting since the old-class labels are unavailable. Most existing methods are based on convolutional networks and prevent forgetting through knowledge distillation, which (1) need to add additional convolutional layers to predict new classes, and (2) ignore to distinguish different regions corresponding to old and new classes during knowledge distillation and roughly distill all the features, thus limiting the learning of new classes. Based on the above observations, we propose a new transformer framework for class-incremental semantic segmentation, dubbed Incrementer, which only needs to add new class tokens to the transformer decoder for new-class learning. Based on the Incrementer, we propose a new knowledge distillation scheme that focuses on the distillation in the old-class regions, which reduces the constraints of the old model on the new-class learning, thus improving the plasticity. Moreover, we propose a class deconfusion strategy to alleviate the overfitting to new classes and the confusion of similar classes. Our method is simple and effective, and extensive experiments show that our method outperforms the SOTAs by a large margin (5~15 absolute points boosts on both Pascal VOC and ADE20k). …

Poster
Rui Gong · Qin Wang · Martin Danelljan · Dengxin Dai · Luc Van Gool

[ West Building Exhibit Halls ABC ]

Unsupervised domain adaptation (UDA) for semantic segmentation aims at improving the model performance on the unlabeled target domain by leveraging a labeled source domain. Existing approaches have achieved impressive progress by utilizing pseudo-labels on the unlabeled target-domain images. Yet the low-quality pseudo-labels, arising from the domain discrepancy, inevitably hinder the adaptation. This calls for effective and accurate approaches to estimating the reliability of the pseudo-labels, in order to rectify them. In this paper, we propose to estimate the rectification values of the predicted pseudo-labels with implicit neural representations. We view the rectification value as a signal defined over the continuous spatial domain. Taking an image coordinate and the nearby deep features as inputs, the rectification value at a given coordinate is predicted as an output. This allows us to achieve high-resolution and detailed rectification values estimation, important for accurate pseudo-label generation at mask boundaries in particular. The rectified pseudo-labels are then leveraged in our rectification-aware mixture model (RMM) to be learned end-to-end and help the adaptation. We demonstrate the effectiveness of our approach on different UDA benchmarks, including synthetic-to-real and day-to-night. Our approach achieves superior results compared to state-of-the-art. The implementation is available at https://github.com/ETHRuiGong/IR2F.

Poster
Lihe Yang · Lei Qi · Litong Feng · Wayne Zhang · Yinghuan Shi

[ West Building Exhibit Halls ABC ]

In this work, we revisit the weak-to-strong consistency framework, popularized by FixMatch from semi-supervised classification, where the prediction of a weakly perturbed image serves as supervision for its strongly perturbed version. Intriguingly, we observe that such a simple pipeline already achieves competitive results against recent advanced works, when transferred to our segmentation scenario. Its success heavily relies on the manual design of strong data augmentations, however, which may be limited and inadequate to explore a broader perturbation space. Motivated by this, we propose an auxiliary feature perturbation stream as a supplement, leading to an expanded perturbation space. On the other, to sufficiently probe original image-level augmentations, we present a dual-stream perturbation technique, enabling two strong views to be simultaneously guided by a common weak view. Consequently, our overall Unified Dual-Stream Perturbations approach (UniMatch) surpasses all existing methods significantly across all evaluation protocols on the Pascal, Cityscapes, and COCO benchmarks. Its superiority is also demonstrated in remote sensing interpretation and medical image analysis. We hope our reproduced FixMatch and our results can inspire more future works. Code and logs are available at https://github.com/LiheYoung/UniMatch.

Poster
Long Li · Junwei Han · Ni Zhang · Nian Liu · Salman Khan · Hisham Cholakkal · Rao Muhammad Anwer · Fahad Shahbaz Khan

[ West Building Exhibit Halls ABC ]

Most previous co-salient object detection works mainly focus on extracting co-salient cues via mining the consistency relations across images while ignoring the explicit exploration of background regions. In this paper, we propose a Discriminative co-saliency and background Mining Transformer framework (DMT) based on several economical multi-grained correlation modules to explicitly mine both co-saliency and background information and effectively model their discrimination. Specifically, we first propose region-to-region correlation modules to economically model inter-image relations for pixel-wise segmentation features. Then, we use two types of predefined tokens to mine co-saliency and background information via our proposed contrast-induced pixel-to-token and co-saliency token-to-token correlation modules. We also design a token-guided feature refinement module to enhance the discriminability of the segmentation features under the guidance of the learned tokens. We perform iterative mutual promotion for the segmentation feature extraction and token construction. Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method. The source code is available at: https://github.com/dragonlee258079/DMT.

Poster
Huajun Zhou · Bo Qiao · Lingxiao Yang · Jianhuang Lai · Xiaohua Xie

[ West Building Exhibit Halls ABC ]

Deep Learning-based Unsupervised Salient Object Detection (USOD) mainly relies on the noisy saliency pseudo labels that have been generated from traditional handcraft methods or pre-trained networks. To cope with the noisy labels problem, a class of methods focus on only easy samples with reliable labels but ignore valuable knowledge in hard samples. In this paper, we propose a novel USOD method to mine rich and accurate saliency knowledge from both easy and hard samples. First, we propose a Confidence-aware Saliency Distilling (CSD) strategy that scores samples conditioned on samples’ confidences, which guides the model to distill saliency knowledge from easy samples to hard samples progressively. Second, we propose a Boundary-aware Texture Matching (BTM) strategy to refine the boundaries of noisy labels by matching the textures around the predicted boundaries. Extensive experiments on RGB, RGB-D, RGB-T, and video SOD benchmarks prove that our method achieves state-of-the-art USOD performance. Code is available at www.github.com/moothes/A2S-v2.

Poster
Dongliang Chang · Yujun Tong · Ruoyi DU · Timothy Hospedales · Yi-Zhe Song · Zhanyu Ma

[ West Building Exhibit Halls ABC ]

Current fine-grained visual classification (FGVC) models are isolated. In practice, we first need to identify the coarse-grained label of an object, then select the corresponding FGVC model for recognition. This hinders the application of the FGVC algorithm in real-life scenarios. In this paper, we propose an erudite FGVC model jointly trained by several different datasets, which can efficiently and accurately predict an object’s fine-grained label across the combined label space. We found through a pilot study that positive and negative transfers co-occur when different datasets are mixed for training, i.e., the knowledge from other datasets is not always useful. Therefore, we first propose a feature disentanglement module and a feature re-fusion module to reduce negative transfer and boost positive transfer between different datasets. In detail, we reduce negative transfer by decoupling the deep features through many dataset-specific feature extractors. Subsequently, these are channel-wise re-fused to facilitate positive transfer. Finally, we propose a meta-learning based dataset-agnostic spatial attention layer to take full advantage of the multi-dataset training data, given that localisation is dataset-agnostic between different datasets. Experimental results across 11 different mixed-datasets built on four different FGVC datasets demonstrate the effectiveness of the proposed method. Furthermore, the proposed method can be …

Poster
Yuan Wang · Kun Yu · Chen Chen · Xiyuan Hu · Silong Peng

[ West Building Exhibit Halls ABC ]

With the springing up of face synthesis techniques, it is prominent in need to develop powerful face forgery detection methods due to security concerns. Some existing methods attempt to employ auxiliary frequency-aware information combined with CNN backbones to discover the forged clues. Due to the inadequate information interaction with image content, the extracted frequency features are thus spatially irrelavant, struggling to generalize well on increasingly realistic counterfeit types. To address this issue, we propose a Spatial-Frequency Dynamic Graph method to exploit the relation-aware features in spatial and frequency domains via dynamic graph learning. To this end, we introduce three well-designed components: 1) Content-guided Adaptive Frequency Extraction module to mine the content-adaptive forged frequency clues. 2) Multiple Domains Attention Map Learning module to enrich the spatial-frequency contextual features with multiscale attention maps. 3) Dynamic Graph Spatial-Frequency Feature Fusion Network to explore the high-order relation of spatial and frequency features. Extensive experiments on several benchmark show that our proposed method sustainedly exceeds the state-of-the-arts by a considerable margin.

Poster
Yanbei Chen · Manchen Wang · Abhay Mittal · Zhenlin Xu · Paolo Favaro · Joseph Tighe · Davide Modolo

[ West Building Exhibit Halls ABC ]

Multi-dataset training provides a viable solution for exploiting heterogeneous large-scale datasets without extra annotation cost. In this work, we propose a scalable multi-dataset detector (ScaleDet) that can scale up its generalization across datasets when increasing the number of training datasets. Unlike existing multi-dataset learners that mostly rely on manual relabelling efforts or sophisticated optimizations to unify labels across datasets, we introduce a simple yet scalable formulation to derive a unified semantic label space for multi-dataset training. ScaleDet is trained by visual-textual alignment to learn the label assignment with label semantic similarities across datasets. Once trained, ScaleDet can generalize well on any given upstream and downstream datasets with seen and unseen classes. We conduct extensive experiments using LVIS, COCO, Objects365, OpenImages as upstream datasets, and 13 datasets from Object Detection in the Wild (ODinW) as downstream datasets. Our results show that ScaleDet achieves compelling strong model performance with an mAP of 50.7 on LVIS, 58.8 on COCO, 46.8 on Objects365, 76.2 on OpenImages, and 71.8 on ODinW, surpassing state-of-the-art detectors with the same backbone.

Poster
Tenghao Cai · Zhizhong Zhang · Xin Tan · Yanyun Qu · Guannan Jiang · Chengjie Wang · Yuan Xie

[ West Building Exhibit Halls ABC ]

Incremental learning could be roughly divided into two categories, i.e., class- and task-incremental learning. The main difference is whether the task ID is given during evaluation. In this paper, we show this task information is indeed a strong prior knowledge, which will bring significant improvement over class-incremental learning baseline, e.g., DER. Based on this observation, we propose a gate network to predict the task ID for class incremental inference. This is challenging as there is no explicit semantic relationship between categories in the concept of task. Therefore, we propose a multi-centroid task descriptor by assuming the data within a task can form multiple clusters. The cluster centers are optimized by pulling relevant sample-centroid pairs while pushing others away, which ensures that there is at least one centroid close to a given sample. To select relevant pairs, we use class prototypes as proxies and solve a bipartite matching problem, making the task descriptor representative yet not degenerate to uni-modal. As a result, our dynamic inference network is trained independently of baseline and provides a flexible, efficient solution to distinguish between tasks. Extensive experiments show our approach achieves state-of-the-art results, e.g., we achieve 72.41% average accuracy on CIFAR100-B0S50, outperforming DER by 3.40%.

Poster
Min Shi · Zihao Huang · Xianzheng Ma · Xiaowei Hu · Zhiguo Cao

[ West Building Exhibit Halls ABC ]

Category-agnostic pose estimation (CAPE) aims to predict keypoints for arbitrary categories given support images with keypoint annotations. Existing approaches match the keypoints across the image for localization. However, such a one-stage matching paradigm shows inferior accuracy: the prediction heavily relies on the matching results, which can be noisy due to the open set nature in CAPE. For example, two mirror-symmetric keypoints (e.g., left and right eyes) in the query image can both trigger high similarity on certain support keypoints (eyes), which leads to duplicated or opposite predictions. To calibrate the inaccurate matching results, we introduce a two-stage framework, where matched keypoints from the first stage are viewed as similarity-aware position proposals. Then, the model learns to fetch relevant features to correct the initial proposals in the second stage. We instantiate the framework with a transformer model tailored for CAPE. The transformer encoder incorporates specific designs to improve the representation and similarity modeling in the first matching stage. In the second stage, similarity-aware proposals are packed as queries in the decoder for refinement via cross-attention. Our method surpasses the previous best approach by large margins on CAPE benchmark MP-100 on both accuracy and efficiency. Code available at https://github.com/flyinglynx/CapeFormer

Poster
Chang Xu · Jian Ding · Jinwang Wang · Wen Yang · Huai Yu · Lei Yu · Gui-Song Xia

[ West Building Exhibit Halls ABC ]

Detecting arbitrarily oriented tiny objects poses intense challenges to existing detectors, especially for label assignment. Despite the exploration of adaptive label assignment in recent oriented object detectors, the extreme geometry shape and limited feature of oriented tiny objects still induce severe mismatch and imbalance issues. Specifically, the position prior, positive sample feature, and instance are mismatched, and the learning of extreme-shaped objects is biased and unbalanced due to little proper feature supervision. To tackle these issues, we propose a dynamic prior along with the coarse-to-fine assigner, dubbed DCFL. For one thing, we model the prior, label assignment, and object representation all in a dynamic manner to alleviate the mismatch issue. For another, we leverage the coarse prior matching and finer posterior constraint to dynamically assign labels, providing appropriate and relatively balanced supervision for diverse instances. Extensive experiments on six datasets show substantial improvements to the baseline. Notably, we obtain the state-of-the-art performance for one-stage detectors on the DOTA-v1.5, DOTA-v2.0, and DIOR-R datasets under single-scale training and testing. Codes are available at https://github.com/Chasel-Tsui/mmrotate-dcfl.

Poster
Shilong Zhang · Xinjiang Wang · Jiaqi Wang · Jiangmiao Pang · Chengqi Lyu · Wenwei Zhang · Ping Luo · Kai Chen

[ West Building Exhibit Halls ABC ]

One-to-one label assignment in object detection has successfully obviated the need of non-maximum suppression (NMS) as a postprocessing and makes the pipeline end-to-end. However, it triggers a new dilemma as the widely used sparse queries cannot guarantee a high recall, while dense queries inevitably bring more similar queries and encounters optimization difficulty. As both sparse and dense queries are problematic, then what are the expected queries in end-to-end object detection? This paper shows that the solution should be Dense Distinct Queries (DDQ). Concretely, we first lay dense queries like traditional detectors and then select distinct ones for one-to-one assignments. DDQ blends the advantages of traditional and recent end-to-end detectors and significantly improves the performance of various detectors including FCN, R-CNN, and DETRs. Most impressively, DDQ-DETR achieves 52.1 AP on MS-COCO dataset within 12 epochs using a ResNet-50 backbone, outperforming all existing detectors in the same setting. DDQ also shares the benefit of end-to-end detectors in crowded scenes and achieves 93.8 AP on CrowdHuman. We hope DDQ can inspire researchers to consider the complementarity between traditional methods and end-to-end detectors. The source code can be found at https://github.com/jshilong/DDQ.

Poster
Berkan Demirel · Orhun Buğra Baran · Ramazan Gokberk Cinbis

[ West Building Exhibit Halls ABC ]

Few-shot object detection, the problem of modelling novel object detection categories with few training instances, is an emerging topic in the area of few-shot learning and object detection. Contemporary techniques can be divided into two groups: fine-tuning based and meta-learning based approaches. While meta-learning approaches aim to learn dedicated meta-models for mapping samples to novel class models, fine-tuning approaches tackle few-shot detection in a simpler manner, by adapting the detection model to novel classes through gradient based optimization. Despite their simplicity, fine-tuning based approaches typically yield competitive detection results. Based on this observation, we focus on the role of loss functions and augmentations as the force driving the fine-tuning process, and propose to tune their dynamics through meta-learning principles. The proposed training scheme, therefore, allows learning inductive biases that can boost few-shot detection, while keeping the advantages of fine-tuning based approaches. In addition, the proposed approach yields interpretable loss functions, as opposed to highly parametric and complex few-shot meta-models. The experimental results highlight the merits of the proposed scheme, with significant improvements over the strong fine-tuning based few-shot detection baselines on benchmark Pascal VOC and MS-COCO datasets, in terms of both standard and generalized few-shot performance metrics.

Poster
Shuai Li · Minghan Li · Ruihuang Li · Chenhang He · Lei Zhang

[ West Building Exhibit Halls ABC ]

One-to-one (o2o) label assignment plays a key role for transformer based end-to-end detection, and it has been recently introduced in fully convolutional detectors for lightweight end-to-end dense detection. However, o2o can largely degrade the feature learning performance due to the limited number of positive samples. Though extra positive samples can be introduced to mitigate this issue, the computation of self- and cross- attentions among anchors prevents its practical application to dense and fully convolutional detectors. In this work, we propose a simple yet effective one-to-few (o2f) label assignment strategy for end-to-end dense detection. Apart from defining one positive and many negative anchors for each object, we define several soft anchors, which serve as positive and negative samples simultaneously. The positive and negative weights of these soft anchors are dynamically adjusted during training so that they can contribute more to ‘representation learning’ in the early training stage and contribute more to ‘duplicated prediction removal’ in the later stage. The detector trained in this way can not only learn a strong feature representation but also perform end-to-end detection. Experiments on COCO and CrowdHuman datasets demonstrate the effectiveness of the proposed o2f scheme.

Poster
Olga Veksler

[ West Building Exhibit Halls ABC ]

It is well known that CNNs tend to overfit to the training data. Test-time adaptation is an extreme approach to deal with overfitting: given a test image, the aim is to adapt the trained model to that image. Indeed nothing can be closer to the test data than the test image itself. The main difficulty of test-time adaptation is that the ground truth is not available. Thus test-time adaptation, while intriguing, applies to only a few scenarios where one can design an effective loss function that does not require ground truth. We propose the first approach for test-time Salient Object Detection (SOD) in the context of weak supervision. Our approach is based on a so called regularized loss function, which can be used for training CNN when pixel precise ground truth is unavailable. Regularized loss tends to have lower values for the more likely object segments, and thus it can be used to fine-tune an already trained CNN to a given test image, adapting to images unseen during training. We develop a regularized loss function particularly suitable for test-time adaptation and show that our approach significantly outperforms prior work for weakly supervised SOD.

Poster
Liang Liu · Boshen Zhang · Jiangning Zhang · Wuhao Zhang · Zhenye Gan · Guanzhong Tian · Wenbing Zhu · Yabiao Wang · Chengjie Wang

[ West Building Exhibit Halls ABC ]

Scale variation across object instances is one of the key challenges in object detection. Although modern detection models have achieved remarkable progress in dealing with the scale variation, it still brings trouble in the semi-supervised case. Most existing semi-supervised object detection methods rely on strict conditions to filter out high-quality pseudo labels from the network predictions. However, we observe that objects with extreme scale tend to have low confidence, which makes the positive supervision missing for these objects. In this paper, we delve into the scale variation problem, and propose a novel framework by introducing a mixed scale teacher to improve the pseudo labels generation and scale invariant learning. In addition, benefiting from the better predictions from mixed scale features, we propose to mine pseudo labels with the score promotion of predictions across scales. Extensive experiments on MS COCO and PASCAL VOC benchmarks under various semi-supervised settings demonstrate that our method achieves new state-of-the-art performance. The code and models will be made publicly available.

Poster
Yunqing Zhao · Chao Du · Milad Abdollahzadeh · Tianyu Pang · Min Lin · Shuicheng Yan · Ngai-Man Cheung

[ West Building Exhibit Halls ABC ]

Few-shot image generation (FSIG) learns to generate diverse and high-fidelity images from a target domain using a few (e.g., 10) reference samples. Existing FSIG methods select, preserve and transfer prior knowledge from a source generator (pretrained on a related domain) to learn the target generator. In this work, we investigate an underexplored issue in FSIG, dubbed as incompatible knowledge transfer, which would significantly degrade the realisticness of synthetic samples. Empirical observations show that the issue stems from the least significant filters from the source generator. To this end, we propose knowledge truncation to mitigate this issue in FSIG, which is a complementary operation to knowledge preservation and is implemented by a lightweight pruning-based method. Extensive experiments show that knowledge truncation is simple and effective, consistently achieving state-of-the-art performance, including challenging setups where the source and target domains are more distant. Project Page: https://yunqing-me.github.io/RICK.

Poster
Yunfei Zhang · Xiaoyang Huo · Tianyi Chen · Si Wu · Hau San Wong

[ West Building Exhibit Halls ABC ]

Semi-supervised class-conditional image synthesis is typically performed by inferring and injecting class labels into a conditional Generative Adversarial Network (GAN). The supervision in the form of class identity may be inadequate to model classes with diverse visual appearances. In this paper, we propose a Learnable Cluster Prompt-based GAN (LCP-GAN) to capture class-wise characteristics and intra-class variation factors with a broader source of supervision. To exploit partially labeled data, we perform soft partitioning on each class, and explore the possibility of associating intra-class clusters with learnable visual concepts in the feature space of a pre-trained language-vision model, e.g., CLIP. For class-conditional image generation, we design a cluster-conditional generator by injecting a combination of intra-class cluster label embeddings, and further incorporate a real-fake classification head on top of CLIP to distinguish real instances from the synthesized ones, conditioned on the learnable cluster prompts. This significantly strengthens the generator with more semantic language supervision. LCP-GAN not only possesses superior generation capability but also matches the performance of the fully supervised version of the base models: BigGAN and StyleGAN2-ADA, on multiple standard benchmarks.

Poster
Xiaoyu Liu · Bo Hu · Mingxing Li · Wei Huang · Yueyi Zhang · Zhiwei Xiong

[ West Building Exhibit Halls ABC ]

Neuron reconstruction in a full adult fly brain from high-resolution electron microscopy (EM) data is regarded as a cornerstone for neuroscientists to explore how neurons inspire intelligence. As the central part of neurons, somas in the full brain indicate the origin of neurogenesis and neural functions. However, due to the absence of EM datasets specifically annotated for somas, existing deep learning-based neuron reconstruction methods cannot directly provide accurate soma distribution and morphology. Moreover, full brain neuron reconstruction remains extremely time-consuming due to the unprecedentedly large size of EM data. In this paper, we develop an efficient soma reconstruction method for obtaining accurate soma distribution and morphology information in a full adult fly brain. To this end, we first make a high-resolution EM dataset with fine-grained 3D manual annotations on somas. Relying on this dataset, we propose an efficient, two-stage deep learning algorithm for predicting accurate locations and boundaries of 3D soma instances. Further, we deploy a parallelized, high-throughput data processing pipeline for executing the above algorithm on the full brain. Finally, we provide quantitative and qualitative benchmark comparisons on the testset to validate the superiority of the proposed method, as well as preliminary statistics of the reconstructed somas in the …

Poster
Hyungseob Shin · Hyeongyu Kim · Sewon Kim · Yohan Jun · Taejoon Eo · Dosik Hwang

[ West Building Exhibit Halls ABC ]

Recent advances in deep learning-based medical image segmentation studies achieve nearly human-level performance in fully supervised manner. However, acquiring pixel-level expert annotations is extremely expensive and laborious in medical imaging fields. Unsupervised domain adaptation (UDA) can alleviate this problem, which makes it possible to use annotated data in one imaging modality to train a network that can successfully perform segmentation on target imaging modality with no labels. In this work, we propose SDC-UDA, a simple yet effective volumetric UDA framework for Slice-Direction Continuous cross-modality medical image segmentation which combines intra- and inter-slice self-attentive image translation, uncertainty-constrained pseudo-label refinement, and volumetric self-training. Our method is distinguished from previous methods on UDA for medical image segmentation in that it can obtain continuous segmentation in the slice direction, thereby ensuring higher accuracy and potential in clinical practice. We validate SDC-UDA with multiple publicly available cross-modality medical image segmentation datasets and achieve state-of-the-art segmentation performance, not to mention the superior slice-direction continuity of prediction compared to previous studies.

Poster
Qixin Hu · Yixiong Chen · Junfei Xiao · Shuwen Sun · Jieneng Chen · Alan L. Yuille · Zongwei Zhou

[ West Building Exhibit Halls ABC ]

We demonstrate that AI models can accurately segment liver tumors without the need for manual annotation by using synthetic tumors in CT scans. Our synthetic tumors have two intriguing advantages: (I) realistic in shape and texture, which even medical professionals can confuse with real tumors; (II) effective for training AI models, which can perform liver tumor segmentation similarly to the model trained on real tumors--this result is exciting because no existing work, using synthetic tumors only, has thus far reached a similar or even close performance to real tumors. This result also implies that manual efforts for annotating tumors voxel by voxel (which took years to create) can be significantly reduced in the future. Moreover, our synthetic tumors can automatically generate many examples of small (or even tiny) synthetic tumors and have the potential to improve the success rate of detecting small liver tumors, which is critical for detecting the early stages of cancer. In addition to enriching the training data, our synthesizing strategy also enables us to rigorously assess the AI robustness.

Poster
Tim Tanida · Philip Müller · Georgios Kaissis · Daniel Rueckert

[ West Building Exhibit Halls ABC ]

The automatic generation of radiology reports has the potential to assist radiologists in the time-consuming task of report writing. Existing methods generate the full report from image-level features, failing to explicitly focus on anatomical regions in the image. We propose a simple yet effective region-guided report generation model that detects anatomical regions and then describes individual, salient regions to form the final report. While previous methods generate reports without the possibility of human intervention and with limited explainability, our method opens up novel clinical use cases through additional interactive capabilities and introduces a high degree of transparency and explainability. Comprehensive experiments demonstrate our method’s effectiveness in report generation, outperforming previous state-of-the-art models, and highlight its interactive capabilities. The code and checkpoints are available at https://github.com/ttanida/rgrg.

Poster
Shengxuming Zhang · Tianqi Shi · Yang Jiang · Xiuming Zhang · Jie Lei · Zunlei Feng · Mingli Song

[ West Building Exhibit Halls ABC ]

Microvascular invasion (MVI) is a critical factor for prognosis evaluation and cancer treatment. The current diagnosis of MVI relies on pathologists to manually find out cancerous cells from hundreds of blood vessels, which is time-consuming, tedious, and subjective. Recently, deep learning has achieved promising results in medical image analysis tasks. However, the unexplainability of black box models and the requirement of massive annotated samples limit the clinical application of deep learning based diagnostic methods. In this paper, aiming to develop an accurate, objective, and explainable diagnosis tool for MVI, we propose a Loopback Network (LoopNet) for classifying MVI efficiently. With the image-level category annotations of the collected Pathologic Vessel Image Dataset (PVID), LoopNet is devised to be composed binary classification branch and cell locating branch. The latter is devised to locate the area of cancerous cells, regular non-cancerous cells, and background. For healthy samples, the pseudo masks of cells supervise the cell locating branch to distinguish the area of regular non-cancerous cells and background. For each MVI sample, the cell locating branch predicts the mask of cancerous cells. Then the masked cancerous and non-cancerous areas of the same sample are inputted back to the binary classification branch separately. The loopback …

Poster
Honglin Li · Chenglu Zhu · Yunlong Zhang · Yuxuan Sun · Zhongyi Shui · Wenwei Kuang · Sunyi Zheng · Lin Yang

[ West Building Exhibit Halls ABC ]

While Multiple Instance Learning (MIL) has shown promising results in digital Pathology Whole Slide Image (WSI) analysis, such a paradigm still faces performance and generalization problems due to high computational costs and limited supervision of Gigapixel WSIs. To deal with the computation problem, previous methods utilize a frozen model pretrained from ImageNet to obtain representations, however, it may lose key information owing to the large domain gap and hinder the generalization ability without image-level training-time augmentation. Though Self-supervised Learning (SSL) proposes viable representation learning schemes, the downstream task-specific features via partial label tuning are not explored. To alleviate this problem, we propose an efficient WSI fine-tuning framework motivated by the Information Bottleneck theory. The theory enables the framework to find the minimal sufficient statistics of WSI, thus supporting us to fine-tune the backbone into a task-specific representation only depending on WSI-level weak labels. The WSI-MIL problem is further analyzed to theoretically deduce our fine-tuning method. We evaluate the method on five pathological WSI datasets on various WSI heads. The experimental results show significant improvements in both accuracy and generalization compared with previous works. Source code will be available at https://github.com/invoker-LL/WSI-finetuning.

Poster
Chien-Yao Wang · Alexey Bochkovskiy · Hong-Yuan Mark Liao

[ West Building Exhibit Halls ABC ]

Real-time object detection is one of the most important research topics in computer vision. As new approaches regarding architecture optimization and training optimization are continually being developed, we have found two research topics that have spawned when dealing with these latest state-of-the-art methods. To address the topics, we propose a trainable bag-of-freebies oriented solution. We combine the flexible and efficient training tools with the proposed architecture and the compound scaling method. YOLOv7 surpasses all known object detectors in both speed and accuracy in the range from 5 FPS to 120 FPS and has the highest accuracy 56.8% AP among all known realtime object detectors with 30 FPS or higher on GPU V100. Source code is released in https://github.com/ WongKinYiu/yolov7.

Poster
Takumi Kobayashi

[ West Building Exhibit Halls ABC ]

A natural image frequently contains multiple classification targets, accordingly providing multiple class labels rather than a single label per image. While the single-label classification is effectively addressed by applying a softmax cross-entropy loss, the multi-label task is tackled mainly in a binary cross-entropy (BCE) framework. In contrast to the softmax loss, the BCE loss involves issues regarding imbalance as multiple classes are decomposed into a bunch of binary classifications; recent works improve the BCE loss to cope with the issue by means of weighting. In this paper, we propose a multi-label loss by bridging a gap between the softmax loss and the multi-label scenario. The proposed loss function is formulated on the basis of relative comparison among classes which also enables us to further improve discriminative power of features by enhancing classification margin. The loss function is so flexible as to be applicable to a multi-label setting in two ways for discriminating classes as well as samples. In the experiments on multi-label classification, the proposed method exhibits competitive performance to the other multi-label losses, and it also provides transferrable features on single-label ImageNet training. Codes are available at https://github.com/tk1980/TwowayMultiLabelLoss.

Poster
Matthew Walmer · Saksham Suri · Kamal Gupta · Abhinav Shrivastava

[ West Building Exhibit Halls ABC ]

Vision Transformers (ViTs) have gained significant popularity in recent years and have proliferated into many applications. However, their behavior under different learning paradigms is not well explored. We compare ViTs trained through different methods of supervision, and show that they learn a diverse range of behaviors in terms of their attention, representations, and downstream performance. We also discover ViT behaviors that are consistent across supervision, including the emergence of Offset Local Attention Heads. These are self-attention heads that attend to a token adjacent to the current token with a fixed directional offset, a phenomenon that to the best of our knowledge has not been highlighted in any prior work. Our analysis shows that ViTs are highly flexible and learn to process local and global information in different orders depending on their training method. We find that contrastive self-supervised methods learn features that are competitive with explicitly supervised features, and they can even be superior for part-level tasks. We also find that the representations of reconstruction-based models show non-trivial similarity to contrastive self-supervised models.

Poster
Bartłomiej Olber · Krystian Radlak · Adam Popowicz · Michal Szczepankiewicz · Krystian Chachuła

[ West Building Exhibit Halls ABC ]

Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain a significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles, and robots. Existing approaches to detect OOD samples treat a DNN as a black box and evaluate the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNNs are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU-based architectures. The proposed method does not introduce a high computational overhead due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets.

Poster
Qinghai Zheng · Jihua Zhu · Haoyu Tang

[ West Building Exhibit Halls ABC ]

In this work, we focus on the challenging problem of Label Enhancement (LE), which aims to exactly recover label distributions from logical labels, and present a novel Label Information Bottleneck (LIB) method for LE. For the recovery process of label distributions, the label irrelevant information contained in the dataset may lead to unsatisfactory recovery performance. To address this limitation, we make efforts to excavate the essential label relevant information to improve the recovery performance. Our method formulates the LE problem as the following two joint processes: 1) learning the representation with the essential label relevant information, 2) recovering label distributions based on the learned representation. The label relevant information can be excavated based on the “bottleneck” formed by the learned representation. Significantly, both the label relevant information about the label assignments and the label relevant information about the label gaps can be explored in our method. Evaluation experiments conducted on several benchmark label distribution learning datasets verify the effectiveness and competitiveness of LIB.

Poster
Haoyu Wang · Guansong Pang · Peng Wang · Lei Zhang · Wei Wei · Yanning Zhang

[ West Building Exhibit Halls ABC ]

Few-shot open-set recognition (FSOR) is a challenging task of great practical value. It aims to categorize a sample to one of the pre-defined, closed-set classes illustrated by few examples while being able to reject the sample from unknown classes. In this work, we approach the FSOR task by proposing a novel energy-based hybrid model. The model is composed of two branches, where a classification branch learns a metric to classify a sample to one of closed-set classes and the energy branch explicitly estimates the open-set probability. To achieve holistic detection of open-set samples, our model leverages both class-wise and pixel-wise features to learn a glocal energy-based score, in which a global energy score is learned using the class-wise features, while a local energy score is learned using the pixel-wise features. The model is enforced to assign large energy scores to samples that are deviated from the few-shot examples in either the class-wise features or the pixel-wise features, and to assign small energy scores otherwise. Experiments on three standard FSOR datasets show the superior performance of our model.

Poster
Haochen Han · Kaiyao Miao · Qinghua Zheng · Minnan Luo

[ West Building Exhibit Halls ABC ]

Despite the success of multimodal learning in cross-modal retrieval task, the remarkable progress relies on the correct correspondence among multimedia data. However, collecting such ideal data is expensive and time-consuming. In practice, most widely used datasets are harvested from the Internet and inevitably contain mismatched pairs. Training on such noisy correspondence datasets causes performance degradation because the cross-modal retrieval methods can wrongly enforce the mismatched data to be similar. To tackle this problem, we propose a Meta Similarity Correction Network (MSCN) to provide reliable similarity scores. We view a binary classification task as the meta-process that encourages the MSCN to learn discrimination from positive and negative meta-data. To further alleviate the influence of noise, we design an effective data purification strategy using meta-data as prior knowledge to remove the noisy samples. Extensive experiments are conducted to demonstrate the strengths of our method in both synthetic and real-world noises, including Flickr30K, MS-COCO, and Conceptual Captions.

Poster
Daniel J. Trosten · Rwiddhi Chakraborty · Sigurd Løkse · Kristoffer Knutsen Wickstrøm · Robert Jenssen · Michael C. Kampffmeyer

[ West Building Exhibit Halls ABC ]

Distance-based classification is frequently used in transductive few-shot learning (FSL). However, due to the high-dimensionality of image representations, FSL classifiers are prone to suffer from the hubness problem, where a few points (hubs) occur frequently in multiple nearest neighbour lists of other points. Hubness negatively impacts distance-based classification when hubs from one class appear often among the nearest neighbors of points from another class, degrading the classifier’s performance. To address the hubness problem in FSL, we first prove that hubness can be eliminated by distributing representations uniformly on the hypersphere. We then propose two new approaches to embed representations on the hypersphere, which we prove optimize a tradeoff between uniformity and local similarity preservation -- reducing hubness while retaining class structure. Our experiments show that the proposed methods reduce hubness, and significantly improves transductive FSL accuracy for a wide range of classifiers.

Poster
Sungnyun Kim · Sangmin Bae · Se-Young Yun

[ West Building Exhibit Halls ABC ]

Deep learning in general domains has constantly been extended to domain-specific tasks requiring the recognition of fine-grained characteristics. However, real-world applications for fine-grained tasks suffer from two challenges: a high reliance on expert knowledge for annotation and necessity of a versatile model for various downstream tasks in a specific domain (e.g., prediction of categories, bounding boxes, or pixel-wise annotations). Fortunately, the recent self-supervised learning (SSL) is a promising approach to pretrain a model without annotations, serving as an effective initialization for any downstream tasks. Since SSL does not rely on the presence of annotation, in general, it utilizes the large-scale unlabeled dataset, referred to as an open-set. In this sense, we introduce a novel Open-Set Self-Supervised Learning problem under the assumption that a large-scale unlabeled open-set is available, as well as the fine-grained target dataset, during a pretraining phase. In our problem setup, it is crucial to consider the distribution mismatch between the open-set and target dataset. Hence, we propose SimCore algorithm to sample a coreset, the subset of an open-set that has a minimum distance to the target dataset in the latent space. We demonstrate that SimCore significantly improves representation learning performance through extensive experimental settings, including eleven fine-grained …

Poster
Yuhao Chen · Xin Tan · Borui Zhao · Zhaowei Chen · Renjie Song · Jiajun Liang · Xuequan Lu

[ West Building Exhibit Halls ABC ]

Semi-supervised learning (SSL) has attracted enormous attention due to its vast potential of mitigating the dependence on large labeled datasets. The latest methods (e.g., FixMatch) use a combination of consistency regularization and pseudo-labeling to achieve remarkable successes. However, these methods all suffer from the waste of complicated examples since all pseudo-labels have to be selected by a high threshold to filter out noisy ones. Hence, the examples with ambiguous predictions will not contribute to the training phase. For better leveraging all unlabeled examples, we propose two novel techniques: Entropy Meaning Loss (EML) and Adaptive Negative Learning (ANL). EML incorporates the prediction distribution of non-target classes into the optimization objective to avoid competition with target class, and thus generating more high-confidence predictions for selecting pseudo-label. ANL introduces the additional negative pseudo-label for all unlabeled data to leverage low-confidence examples. It adaptively allocates this label by dynamically evaluating the top-k performance of the model. EML and ANL do not introduce any additional parameter and hyperparameter. We integrate these techniques with FixMatch, and develop a simple yet powerful framework called FullMatch. Extensive experiments on several common SSL benchmarks (CIFAR-10/100, SVHN, STL-10 and ImageNet) demonstrate that FullMatch exceeds FixMatch by a large margin. Integrated …

Poster
Yanxi Li · Chang Xu

[ West Building Exhibit Halls ABC ]

Although deep neural networks (DNNs) have shown great successes in computer vision tasks, they are vulnerable to perturbations on inputs, and there exists a trade-off between the natural accuracy and robustness to such perturbations, which is mainly caused by the existence of robust non-predictive features and non-robust predictive features. Recent empirical analyses find Vision Transformers (ViTs) are inherently robust to various kinds of perturbations, but the aforementioned trade-off still exists for them. In this work, we propose Trade-off between Robustness and Accuracy of Vision Transformers (TORA-ViTs), which aims to efficiently transfer ViT models pretrained on natural tasks for both accuracy and robustness. TORA-ViTs consist of two major components, including a pair of accuracy and robustness adapters to extract predictive and robust features, respectively, and a gated fusion module to adjust the trade-off. The gated fusion module takes outputs of a pretrained ViT block as queries and outputs of our adapters as keys and values, and tokens from different adapters at different spatial locations are compared with each other to generate attention scores for a balanced mixing of predictive and robust features. Experiments on ImageNet with various robust benchmarks show that our TORA-ViTs can efficiently improve the robustness of naturally pretrained …

Poster
Shibin Mei · Chenglong Zhao · Shengchao Yuan · Bingbing Ni

[ West Building Exhibit Halls ABC ]

In this paper, we identify pattern imbalance from several aspects, and further develop a new training scheme to avert pattern preference as well as spurious correlation. In contrast to prior methods which are mostly concerned with category or domain granularity, ignoring the potential finer structure that existed in datasets, we give a new definition of seed category as an appropriate optimization unit to distinguish different patterns in the same category or domain. Extensive experiments on domain generalization datasets of diverse scales demonstrate the effectiveness of the proposed method.

Poster
Nan Pu · Zhun Zhong · Nicu Sebe

[ West Building Exhibit Halls ABC ]

Generalized category discovery (GCD) is a recently proposed open-world problem, which aims to automatically cluster partially labeled data. The main challenge is that the unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories. This leads traditional novel category discovery (NCD) methods to be incapacitated for GCD, due to their assumption of unlabeled data are only from novel categories. One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data. However, this manner largely ignores underlying relationships between instances of the same concepts (e.g., class, super-class, and sub-class), which results in inferior representation learning. In this paper, we propose a Dynamic Conceptional Contrastive Learning (DCCL) framework, which can effectively improve clustering accuracy by alternately estimating underlying visual conceptions and learning conceptional representation. In addition, we design a dynamic conception generation and update mechanism, which is able to ensure consistent conception learning and thus further facilitate the optimization of DCCL. Extensive experiments show that DCCL achieves new state-of-the-art performances on six generic and fine-grained visual recognition datasets, especially on fine-grained ones. For example, our method significantly surpasses the best competitor by 16.2% on the new classes …

Poster
Miguel Á. Carreira-Perpiñán · Magzhan Gabidolla · Arman Zharmagambetov

[ West Building Exhibit Halls ABC ]

Decision forests are among the most accurate models in machine learning. This is remarkable given that the way they are trained is highly heuristic: neither the individual trees nor the overall forest optimize any well-defined loss. While diversity mechanisms such as bagging or boosting have been until now critical in the success of forests, we think that a better optimization should lead to better forests---ideally eliminating any need for an ensembling heuristic. However, unlike for most other models, such as neural networks, optimizing forests or trees is not easy, because they define a non-differentiable function. We show, for the first time, that it is possible to learn a forest by optimizing a desirable loss and regularization jointly over all its trees and parameters. Our algorithm, Forest Alternating Optimization, is based on defining a forest as a parametric model with a fixed number of trees and structure (rather than adding trees indefinitely as in bagging or boosting). It then iteratively updates each tree in alternation so that the objective function decreases monotonically. The algorithm is so effective at optimizing that it easily overfits, but this can be corrected by averaging. The result is a forest that consistently exceeds the accuracy of …

Poster
Yi-Kai Zhang · Qi-Wei Wang · De-Chuan Zhan · Han-Jia Ye

[ West Building Exhibit Halls ABC ]

An image is usually described by more than one attribute like “shape” and “color”. When a dataset is biased, i.e., most samples have attributes spuriously correlated with the target label, a Deep Neural Network (DNN) is prone to make predictions by the “unintended” attribute, especially if it is easier to learn. To improve the generalization ability when training on such a biased dataset, we propose a chi^2-model to learn debiased representations. First, we design a chi-shape pattern to match the training dynamics of a DNN and find Intermediate Attribute Samples (IASs) --- samples near the attribute decision boundaries, which indicate how the value of an attribute changes from one extreme to another. Then we rectify the representation with a chi-structured metric learning objective. Conditional interpolation among IASs eliminates the negative effect of peripheral attributes and facilitates retaining the intra-class compactness. Experiments show that chi^2-model learns debiased representation effectively and achieves remarkable improvements on various datasets.

Poster
Deng-Bao Wang · Lanqing Li · Peilin Zhao · Pheng-Ann Heng · Min-Ling Zhang

[ West Building Exhibit Halls ABC ]

By simply taking convex combinations between pairs of samples and their labels, mixup training has been shown to easily improve predictive accuracy. It has been recently found that models trained with mixup also perform well on uncertainty calibration. However, in this study, we found that mixup training usually makes models less calibratable than vanilla empirical risk minimization, which means that it would harm uncertainty estimation when post-hoc calibration is considered. By decomposing the mixup process into data transformation and random perturbation, we suggest that the confidence penalty nature of the data transformation is the reason of calibration degradation. To mitigate this problem, we first investigate the mixup inference strategy and found that despite it improves calibration on mixup, this ensemble-like strategy does not necessarily outperform simple ensemble. Then, we propose a general strategy named mixup inference in training, which adopts a simple decoupling principle for recovering the outputs of raw samples at the end of forward network pass. By embedding the mixup inference, models can be learned from the original one-hot labels and hence avoid the negative impact of confidence penalty. Our experiments show this strategy properly solves mixup’s calibration issue without sacrificing the predictive performance, while even improves accuracy …

Poster
Yixin Zhang · Zilei Wang · Weinan He

[ West Building Exhibit Halls ABC ]

This work focuses on a practical knowledge transfer task defined as Source-Free Unsupervised Domain Adaptation (SFUDA), where only a well-trained source model and unlabeled target data are available. To fully utilize source knowledge, we propose to transfer the class relationship, which is domain-invariant but still under-explored in previous works. To this end, we first regard the classifier weights of the source model as class prototypes to compute class relationship, and then propose a novel probability-based similarity between target-domain samples by embedding the source-domain class relationship, resulting in Class Relationship embedded Similarity (CRS). Here the inter-class term is particularly considered in order to more accurately represent the similarity between two samples, in which the source prior of class relationship is utilized by weighting. Finally, we propose to embed CRS into contrastive learning in a unified form. Here both class-aware and instance discrimination contrastive losses are employed, which are complementary to each other. We combine the proposed method with existing representative methods to evaluate its efficacy in multiple SFUDA settings. Extensive experimental results reveal that our method can achieve state-of-the-art performance due to the transfer of domain-invariant class relationship.

Poster
Xinjiang Wang · Zeyu Liu · Yu Hu · Wei Xi · Wenxian Yu · Danping Zou

[ West Building Exhibit Halls ABC ]

We introduce a lightweight network to improve descriptors of keypoints within the same image. The network takes the original descriptors and the geometric properties of keypoints as the input, and uses an MLP-based self-boosting stage and a Transformer-based cross-boosting stage to enhance the descriptors. The boosted descriptors can be either real-valued or binary ones. We use the proposed network to boost both hand-crafted (ORB, SIFT) and the state-of-the-art learning-based descriptors (SuperPoint, ALIKE) and evaluate them on image matching, visual localization, and structure-from-motion tasks. The results show that our method significantly improves the performance of each task, particularly in challenging cases such as large illumination changes or repetitive patterns. Our method requires only 3.2ms on desktop GPU and 27ms on embedded GPU to process 2000 features, which is fast enough to be applied to a practical system. The code and trained weights are publicly available at github.com/SJTU-ViSYS/FeatureBooster.

Poster
Mattia Litrico · Alessio Del Bue · Pietro Morerio

[ West Building Exhibit Halls ABC ]

Standard Unsupervised Domain Adaptation (UDA) methods assume the availability of both source and target data during the adaptation. In this work, we investigate Source-free Unsupervised Domain Adaptation (SF-UDA), a specific case of UDA where a model is adapted to a target domain without access to source data. We propose a novel approach for the SF-UDA setting based on a loss reweighting strategy that brings robustness against the noise that inevitably affects the pseudo-labels. The classification loss is reweighted based on the reliability of the pseudo-labels that is measured by estimating their uncertainty. Guided by such reweighting strategy, the pseudo-labels are progressively refined by aggregating knowledge from neighbouring samples. Furthermore, a self-supervised contrastive framework is leveraged as a target space regulariser to enhance such knowledge aggregation. A novel negative pairs exclusion strategy is proposed to identify and exclude negative pairs made of samples sharing the same class, even in presence of some noise in the pseudo-labels. Our method outperforms previous methods on three major benchmarks by a large margin. We set the new SF-UDA state-of-the-art on VisDA-C and DomainNet with a performance gain of +1.8% on both benchmarks and on PACS with +12.3% in the single-source setting and +6.6% in multi-target …

Poster
Duojun Huang · Jichang Li · Weikai Chen · Junshi Huang · Zhenhua Chai · Guanbin Li

[ West Building Exhibit Halls ABC ]

Active domain adaptation (ADA) aims to improve the model adaptation performance by incorporating the active learning (AL) techniques to label a maximally-informative subset of target samples. Conventional AL methods do not consider the existence of domain shift, and hence, fail to identify the truly valuable samples in the context of domain adaptation. To accommodate active learning and domain adaption, the two naturally different tasks, in a collaborative framework, we advocate that a customized learning strategy for the target data is the key to the success of ADA solutions. We present Divide-and-Adapt (DiaNA), a new ADA framework that partitions the target instances into four categories with stratified transferable properties. With a novel data subdivision protocol based on uncertainty and domainness, DiaNA can accurately recognize the most gainful samples. While sending the informative instances for annotation, DiaNA employs tailored learning strategies for the remaining categories. Furthermore, we propose an informativeness score that unifies the data partitioning criteria. This enables the use of a Gaussian mixture model (GMM) to automatically sample unlabeled data into the proposed four categories. Thanks to the “divide-and-adapt” spirit, DiaNA can handle data with large variations of domain gap. In addition, we show that DiaNA can generalize to different …

Poster
Qian Jiang · Changyou Chen · Han Zhao · Liqun Chen · Qing Ping · Son Dinh Tran · Yi Xu · Belinda Zeng · Trishul Chilimbi

[ West Building Exhibit Halls ABC ]

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Poster
Chengkun Wang · Wenzhao Zheng · Junlong Li · Jie Zhou · Jiwen Lu

[ West Building Exhibit Halls ABC ]

Learning a generalizable and comprehensive similarity metric to depict the semantic discrepancies between images is the foundation of many computer vision tasks. While existing methods approach this goal by learning an ensemble of embeddings with diverse objectives, the backbone network still receives a mix of all the training signals. Differently, we propose a deep factorized metric learning method (DFML) to factorize the training signal and employ different samples to train various components of the backbone network. We factorize the network to different sub-blocks and devise a learnable router to adaptively allocate the training samples to each sub-block with the objective to capture the most information. The metric model trained by DFML captures different characteristics with different sub-blocks and constitutes a generalizable metric when using all the sub-blocks. The proposed DFML achieves state-of-the-art performance on all three benchmarks for deep metric learning including CUB-200-2011, Cars196, and Stanford Online Products. We also generalize DFML to the image classification task on ImageNet-1K and observe consistent improvement in accuracy/computation trade-off. Specifically, we improve the performance of ViT-B on ImageNet (+0.2% accuracy) with less computation load (-24% FLOPs).

Poster
Jin Chen · Zhi Gao · Xinxiao Wu · Jiebo Luo

[ West Building Exhibit Halls ABC ]

Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains). Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains. In this paper, we propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation. Under this paradigm, we propose a meta-causal learning method to learn meta-knowledge, that is, how to infer the causes of domain shift between the auxiliary and source domains during training. We use the meta-knowledge to analyze the shift between the target and source domains during testing. Specifically, we perform multiple transformations on source data to generate the auxiliary domain, perform counterfactual inference to learn to discover the causal factors of the shift between the auxiliary and source domains, and incorporate the inferred causality into factor-aware domain alignments. Extensive experiments on several benchmarks of image classification show the effectiveness of our method.

Poster
Ondrej Bohdal · Yinbing Tian · Yongshuo Zong · Ruchika Chavhan · Da Li · Henry Gouk · Li Guo · Timothy Hospedales

[ West Building Exhibit Halls ABC ]

Meta-learning and other approaches to few-shot learning are widely studied for image recognition, and are increasingly applied to other vision tasks such as pose estimation and dense prediction. This naturally raises the question of whether there is any few-shot meta-learning algorithm capable of generalizing across these diverse task types? To support the community in answering this question, we introduce Meta Omnium, a dataset-of-datasets spanning multiple vision tasks including recognition, keypoint localization, semantic segmentation and regression. We experiment with popular few-shot meta-learning baselines and analyze their ability to generalize across tasks and to transfer knowledge between them. Meta Omnium enables meta-learning researchers to evaluate model generalization to a much wider array of tasks than previously possible, and provides a single framework for evaluating meta-learners across a wide suite of vision applications in a consistent manner.

Poster
Mario Döbler · Robert A. Marsden · Bin Yang

[ West Building Exhibit Halls ABC ]

Since experiencing domain shifts during test-time is inevitable in practice, test-time adaption (TTA) continues to adapt the model after deployment. Recently, the area of continual and gradual test-time adaptation (TTA) emerged. In contrast to standard TTA, continual TTA considers not only a single domain shift, but a sequence of shifts. Gradual TTA further exploits the property that some shifts evolve gradually over time. Since in both settings long test sequences are present, error accumulation needs to be addressed for methods relying on self-training. In this work, we propose and show that in the setting of TTA, the symmetric cross-entropy is better suited as a consistency loss for mean teachers compared to the commonly used cross-entropy. This is justified by our analysis with respect to the (symmetric) cross-entropy’s gradient properties. To pull the test feature space closer to the source domain, where the pre-trained model is well posed, contrastive learning is leveraged. Since applications differ in their requirements, we address several settings, including having source data available and the more challenging source-free setting. We demonstrate the effectiveness of our proposed method “robust mean teacher“ (RMT) on the continual and gradual corruption benchmarks CIFAR10C, CIFAR100C, and Imagenet-C. We further consider ImageNet-R and …

Poster
Yun Yi · Haokui Zhang · Wenze Hu · Nannan Wang · Xiaoyu Wang

[ West Building Exhibit Halls ABC ]

With the wide and deep adoption of deep learning models in real applications, there is an increasing need to model and learn the representations of the neural networks themselves. These models can be used to estimate attributes of different neural network architectures such as the accuracy and latency, without running the actual training or inference tasks. In this paper, we propose a neural architecture representation model that can be used to estimate these attributes holistically. Specifically, we first propose a simple and effective tokenizer to encode both the operation and topology information of a neural network into a single sequence. Then, we design a multi-stage fusion transformer to build a compact vector representation from the converted sequence. For efficient model training, we further propose an information flow consistency augmentation and correspondingly design an architecture consistency loss, which brings more benefits with less augmentation samples compared with previous random augmentation strategies. Experiment results on NAS-Bench-101, NAS-Bench-201, DARTS search space and NNLQP show that our proposed framework can be used to predict the aforementioned latency and accuracy attributes of both cell architectures and whole deep neural networks, and achieves promising performance. Code is available at https://github.com/yuny220/NAR-Former.

Poster
Cheng-Hao Tu · Zheda Mai · Wei-Lun Chao

[ West Building Exhibit Halls ABC ]

Intermediate features of a pre-trained model have been shown informative for making accurate predictions on downstream tasks, even if the model backbone is frozen. The key challenge is how to utilize them, given the gigantic amount. We propose visual query tuning (VQT), a simple yet effective approach to aggregate intermediate features of Vision Transformers. Through introducing a handful of learnable “query” tokens to each layer, VQT leverages the inner workings of Transformers to “summarize” rich intermediate features of each layer, which can then be used to train the prediction heads of downstream tasks. As VQT keeps the intermediate features intact and only learns to combine them, it enjoys memory efficiency in training, compared to many other parameter-efficient fine-tuning approaches that learn to adapt features and need back-propagation through the entire backbone. This also suggests the complementary role between VQT and those approaches in transfer learning. Empirically, VQT consistently surpasses the state-of-the-art approach that utilizes intermediate features for transfer learning and outperforms full fine-tuning in many cases. Compared to parameter-efficient approaches that adapt features, VQT achieves much higher accuracy under memory constraints. Most importantly, VQT is compatible with these approaches to attain higher accuracy, making it a simple add-on to further …

Poster
Zixuan Hu · Li Shen · Zhenyi Wang · Tongliang Liu · Chun Yuan · Dacheng Tao

[ West Building Exhibit Halls ABC ]

The goal of data-free meta-learning is to learn useful prior knowledge from a collection of pre-trained models without accessing their training data. However, existing works only solve the problem in parameter space, which (i) ignore the fruitful data knowledge contained in the pre-trained models; (ii) can not scale to large-scale pre-trained models; (iii) can only meta-learn pre-trained models with the same network architecture. To address those issues, we propose a unified framework, dubbed PURER, which contains: (1) ePisode cUrriculum inveRsion (ECI) during data-free meta training; and (2) invErsion calibRation following inner loop (ICFIL) during meta testing. During meta training, we propose ECI to perform pseudo episode training for learning to adapt fast to new unseen tasks. Specifically, we progressively synthesize a sequence of pseudo episodes by distilling the training data from each pre-trained model. The ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model. We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner. During meta testing, we further propose a simple plug-and-play supplement--ICFIL--only used during meta testing to narrow the gap between meta training and meta testing task distribution. Extensive experiments in …

Poster
Huiping Zhuang · Zhenyu Weng · Run He · Zhiping Lin · Ziqian Zeng

[ West Building Exhibit Halls ABC ]

Few-shot class incremental learning (FSCIL) aims to address catastrophic forgetting during class incremental learning in a few-shot learning setting. In this paper, we approach the FSCIL by adopting analytic learning, a technique that converts network training into linear problems. This is inspired by the fact that the recursive implementation (batch-by-batch learning) of analytic learning gives identical weights to that produced by training on the entire dataset at once. The recursive implementation and the weight-identical property highly resemble the FSCIL setting (phase-by-phase learning) and its goal of avoiding catastrophic forgetting. By bridging the FSCIL with the analytic learning, we propose a Gaussian kernel embedded analytic learning (GKEAL) for FSCIL. The key components of GKEAL include the kernel analytic module which allows the GKEAL to conduct FSCIL in a recursive manner, and the augmented feature concatenation module that balances the preference between old and new tasks especially effectively under the few-shot setting. Our experiments show that the GKEAL gives state-of-the-art performance on several benchmark datasets.

Poster
Chuntao Ding · Zhichao Lu · Shangguang Wang · Ran Cheng · Vishnu Naresh Boddeti

[ West Building Exhibit Halls ABC ]

Multi-task learning (MTL) seeks to learn a single model to accomplish multiple tasks by leveraging shared information among the tasks. Existing MTL models, however, have been known to suffer from negative interference among tasks. Efforts to mitigate task interference have focused on either loss/gradient balancing or implicit parameter partitioning with partial overlaps among the tasks. In this paper, we propose ETR-NLP to mitigate task interference through a synergistic combination of non-learnable primitives (NLPs) and explicit task routing (ETR). Our key idea is to employ non-learnable primitives to extract a diverse set of task-agnostic features and recombine them into a shared branch common to all tasks and explicit task-specific branches reserved for each task. The non-learnable primitives and the explicit decoupling of learnable parameters into shared and task-specific ones afford the flexibility needed for minimizing task interference. We evaluate the efficacy of ETR-NLP networks for both image-level classification and pixel-level dense prediction MTL problems. Experimental results indicate that ETR-NLP significantly outperforms state-of-the-art baselines with fewer learnable parameters and similar FLOPs across all datasets. Code is available at this URL.

Poster
Min Chen · Weizhuo Gao · Gaoyang Liu · Kai Peng · Chen Wang

[ West Building Exhibit Halls ABC ]

The practical needs of the “right to be forgotten” and poisoned data removal call for efficient machine unlearning techniques, which enable machine learning models to unlearn, or to forget a fraction of training data and its lineage. Recent studies on machine unlearning for deep neural networks (DNNs) attempt to destroy the influence of the forgetting data by scrubbing the model parameters. However, it is prohibitively expensive due to the large dimension of the parameter space. In this paper, we refocus our attention from the parameter space to the decision space of the DNN model, and propose Boundary Unlearning, a rapid yet effective way to unlearn an entire class from a trained DNN model. The key idea is to shift the decision boundary of the original DNN model to imitate the decision behavior of the model retrained from scratch. We develop two novel boundary shift methods, namely Boundary Shrink and Boundary Expanding, both of which can rapidly achieve the utility and privacy guarantees. We extensively evaluate Boundary Unlearning on CIFAR-10 and Vggface2 datasets, and the results show that Boundary Unlearning can effectively forget the forgetting class on image classification and face recognition tasks, with an expected speed-up of 17× and 19×, …

Poster
Wenjin Wang · Yunqing Hu · Qianglong Chen · Yin Zhang

[ West Building Exhibit Halls ABC ]

Parameter regularization or allocation methods are effective in overcoming catastrophic forgetting in lifelong learning. However, they solve all tasks in a sequence uniformly and ignore the differences in the learning difficulty of different tasks. So parameter regularization methods face significant forgetting when learning a new task very different from learned tasks, and parameter allocation methods face unnecessary parameter overhead when learning simple tasks. In this paper, we propose the Parameter Allocation & Regularization (PAR), which adaptively select an appropriate strategy for each task from parameter allocation and regularization based on its learning difficulty. A task is easy for a model that has learned tasks related to it and vice versa. We propose a divergence estimation method based on the Nearest-Prototype distance to measure the task relatedness using only features of the new task. Moreover, we propose a time-efficient relatedness-aware sampling-based architecture search strategy to reduce the parameter overhead for allocation. Experimental results on multiple benchmarks demonstrate that, compared with SOTAs, our method is scalable and significantly reduces the model’s redundancy while improving the model’s performance. Further qualitative analysis indicates that PAR obtains reasonable task-relatedness.

Poster
Gaurav Patel · Konda Reddy Mopuri · Qiang Qiu

[ West Building Exhibit Halls ABC ]

Data-free Knowledge Distillation (DFKD) has gained popularity recently, with the fundamental idea of carrying out knowledge transfer from a Teacher neural network to a Student neural network in the absence of training data. However, in the Adversarial DFKD framework, the student network’s accuracy, suffers due to the non-stationary distribution of the pseudo-samples under multiple generator updates. To this end, at every generator update, we aim to maintain the student’s performance on previously encountered examples while acquiring knowledge from samples of the current distribution. Thus, we propose a meta-learning inspired framework by treating the task of Knowledge-Acquisition (learning from newly generated samples) and Knowledge-Retention (retaining knowledge on previously met samples) as meta-train and meta-test, respectively. Hence, we dub our method as Learning to Retain while Acquiring. Moreover, we identify an implicit aligning factor between the Knowledge-Retention and Knowledge-Acquisition tasks indicating that the proposed student update strategy enforces a common gradient direction for both tasks, alleviating interference between the two objectives. Finally, we support our hypothesis by exhibiting extensive evaluation and comparison of our method with prior arts on multiple datasets.

Poster
Yizhuo Chen · Kaizhao Liang · Zhe Zeng · Shuochao Yao · Huajie Shao

[ West Building Exhibit Halls ABC ]

Knowledge distillation (KD) is a technique that transfers the knowledge from a large teacher network to a small student network. It has been widely applied to many different tasks, such as model compression and federated learning. However, existing KD methods fail to generalize to general deep directed graphical models (DGMs) with arbitrary layers of random variables. We refer by deep DGMs to DGMs whose conditional distributions are parameterized by deep neural networks. In this work, we propose a novel unified knowledge distillation framework for deep DGMs on various applications. Specifically, we leverage the reparameterization trick to hide the intermediate latent variables, resulting in a compact DGM. Then we develop a surrogate distillation loss to reduce error accumulation through multiple layers of random variables. Moreover, we present the connections between our method and some existing knowledge distillation approaches. The proposed framework is evaluated on four applications: data-free hierarchical variational autoencoder (VAE) compression, data-free variational recurrent neural networks (VRNN) compression, data-free Helmholtz Machine (HM) compression, and VAE continual learning. The results show that our distillation method outperforms the baselines in data-free model compression tasks. We further demonstrate that our method significantly improves the performance of KD-based continual learning for data generation. Our …

Poster
Jimuyang Zhang · Zanming Huang · Eshed Ohn-Bar

[ West Building Exhibit Halls ABC ]

We propose a novel knowledge distillation framework for effectively teaching a sensorimotor student agent to drive from the supervision of a privileged teacher agent. Current distillation for sensorimotor agents methods tend to result in suboptimal learned driving behavior by the student, which we hypothesize is due to inherent differences between the input, modeling capacity, and optimization processes of the two agents. We develop a novel distillation scheme that can address these limitations and close the gap between the sensorimotor agent and its privileged teacher. Our key insight is to design a student which learns to align their input features with the teacher’s privileged Bird’s Eye View (BEV) space. The student then can benefit from direct supervision by the teacher over the internal representation learning. To scaffold the difficult sensorimotor learning task, the student model is optimized via a student-paced coaching mechanism with various auxiliary supervision. We further propose a high-capacity imitation learned privileged agent that surpasses prior privileged agents in CARLA and ensures the student learns safe driving behavior. Our proposed sensorimotor agent results in a robust image-based behavior cloning agent in CARLA, improving over current models by over 20.6% in driving score without requiring LiDAR, historical observations, ensemble of …

Poster
Yan-Shuo Liang · Wu-Jun Li

[ West Building Exhibit Halls ABC ]

Many works have tried to solve the catastrophic forgetting (CF) problem in continual learning (lifelong learning). However, pursuing non-forgetting on old tasks may damage the model’s plasticity for new tasks. Although some methods have been proposed to achieve stability-plasticity trade-off, no methods have considered evaluating a model’s plasticity and improving plasticity adaptively for a new task. In this work, we propose a new method, called adaptive plasticity improvement (API), for continual learning. Besides the ability to overcome CF on old tasks, API also tries to evaluate the model’s plasticity and then adaptively improve the model’s plasticity for learning a new task if necessary. Experiments on several real datasets show that API can outperform other state-of-the-art baselines in terms of both accuracy and memory usage.

Poster
Lianzhe Wang · Shiji Zhou · Shanghang Zhang · Xu Chu · Heng Chang · Wenwu Zhu

[ West Building Exhibit Halls ABC ]

Despite the broad interest in meta-learning, the generalization problem remains one of the significant challenges in this field. Existing works focus on meta-generalization to unseen tasks at the meta-level by regularizing the meta-loss, while ignoring that adapted models may not generalize to the task domains at the adaptation level. In this paper, we propose a new regularization mechanism for meta-learning -- Minimax-Meta Regularization, which employs inverted regularization at the inner loop and ordinary regularization at the outer loop during training. In particular, the inner inverted regularization makes the adapted model more difficult to generalize to task domains; thus, optimizing the outer-loop loss forces the meta-model to learn meta-knowledge with better generalization. Theoretically, we prove that inverted regularization improves the meta-testing performance by reducing generalization errors. We conduct extensive experiments on the representative scenarios, and the results show that our method consistently improves the performance of meta-learning algorithms.

Poster
Junjiao Tian · Zecheng He · Xiaoliang Dai · Chih-Yao Ma · Yen-Cheng Liu · Zsolt Kira

[ West Building Exhibit Halls ABC ]

Recent studies on transfer learning have shown that selectively fine-tuning a subset of layers or customizing different learning rates for each layer can greatly improve robustness to out-of-distribution (OOD) data and retain generalization capability in the pre-trained models. However, most of these methods employ manually crafted heuristics or expensive hyper-parameter search, which prevent them from scaling up to large datasets and neural networks. To solve this problem, we propose Trainable Projected Gradient Method (TPGM) to automatically learn the constraint imposed for each layer for a fine-grained fine-tuning regularization. This is motivated by formulating fine-tuning as a bi-level constrained optimization problem. Specifically, TPGM maintains a set of projection radii, i.e., distance constraints between the fine-tuned model and the pre-trained model, for each layer, and enforces them through weight projections. To learn the constraints, we propose a bi-level optimization to automatically learn the best set of projection radii in an end-to-end manner. Theoretically, we show that the bi-level optimization formulation is the key to learn different constraints for each layer. Empirically, with little hyper-parameter search cost, TPGM outperforms existing fine-tuning methods in OOD performance while matching the best in-distribution (ID) performance. For example, when fine-tuned on DomainNet-Real and ImageNet, compared to vanilla …

Poster
Siwei Chen · Xiao Ma · Zhongwen Xu

[ West Building Exhibit Halls ABC ]

Existing imitation learning (IL) methods such as inverse reinforcement learning (IRL) usually have a double-loop training process, alternating between learning a reward function and a policy and tend to suffer long training time and high variance. In this work, we identify the benefits of differentiable physics simulators and propose a new IL method, i.e., Imitation Learning via Differentiable Physics (ILD), which gets rid of the double-loop design and achieves significant improvements in final performance, convergence speed, and stability. The proposed ILD incorporates the differentiable physics simulator as a physics prior into its computational graph for policy learning. It unrolls the dynamics by sampling actions from a parameterized policy, simply minimizing the distance between the expert trajectory and the agent trajectory, and back-propagating the gradient into the policy via temporal physics operators. With the physics prior, ILD policies can not only be transferable to unseen environment specifications but also yield higher final performance on a variety of tasks. In addition, ILD naturally forms a single-loop structure, which significantly improves the stability and training speed. To simplify the complex optimization landscape induced by temporal physics operations, ILD dynamically selects the learning objectives for each state during optimization. In our experiments, we show …

Poster
Ganlong Zhao · Guanbin Li · Yipeng Qin · Yizhou Yu

[ West Building Exhibit Halls ABC ]

Dataset Condensation aims to condense a large dataset into a smaller one while maintaining its ability to train a well-performing model, thus reducing the storage cost and training effort in deep learning applications. However, conventional dataset condensation methods are optimization-oriented and condense the dataset by performing gradient or parameter matching during model optimization, which is computationally intensive even on small datasets and models. In this paper, we propose a novel dataset condensation method based on distribution matching, which is more efficient and promising. Specifically, we identify two important shortcomings of naive distribution matching (i.e., imbalanced feature numbers and unvalidated embeddings for distance computation) and address them with three novel techniques (i.e., partitioning and expansion augmentation, efficient and enriched model sampling, and class-aware distribution regularization). Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources, thereby scaling data condensation to larger datasets and models. Extensive experiments demonstrate the effectiveness of our method. Codes are available at https://github.com/uitrbn/IDM

Poster
Hongwei Yong · Ying Sun · Lei Zhang

[ West Building Exhibit Halls ABC ]

While adaptive learning rate methods, such as Adam, have achieved remarkable improvement in optimizing Deep Neural Networks (DNNs), they consider only the diagonal elements of the full preconditioned matrix. Though the full-matrix preconditioned gradient methods theoretically have a lower regret bound, they are impractical for use to train DNNs because of the high complexity. In this paper, we present a general regret bound with a constrained full-matrix preconditioned gradient and show that the updating formula of the preconditioner can be derived by solving a cone-constrained optimization problem. With the block-diagonal and Kronecker-factorized constraints, a specific guide function can be obtained. By minimizing the upper bound of the guide function, we develop a new DNN optimizer, termed AdaBK. A series of techniques, including statistics updating, dampening, efficient matrix inverse root computation, and gradient amplitude preservation, are developed to make AdaBK effective and efficient to implement. The proposed AdaBK can be readily embedded into many existing DNN optimizers, e.g., SGDM and AdamW, and the corresponding SGDMBK and AdamWBK algorithms demonstrate significant improvements over existing DNN optimizers on benchmark vision tasks, including image classification, object detection and segmentation. The source code will be made publicly available.

Poster
Jie Chen · Zilong Li · Yin Zhu · Junping Zhang · Jian Pu

[ West Building Exhibit Halls ABC ]

Existing Graph Neural Networks (GNNs) follow the message-passing mechanism that conducts information interaction among nodes iteratively. While considerable progress has been made, such node interaction paradigms still have the following limitation. First, the scalability limitation precludes the broad application of GNNs in large-scale industrial settings since the node interaction among rapidly expanding neighbors incurs high computation and memory costs. Second, the over-smoothing problem restricts the discrimination ability of nodes, i.e., node representations of different classes will converge to indistinguishable after repeated node interactions. In this work, we propose a novel hop interaction paradigm to address these limitations simultaneously. The core idea is to convert the interaction target among nodes to pre-processed multi-hop features inside each node. We design a simple yet effective HopGNN framework that can easily utilize existing GNNs to achieve hop interaction. Furthermore, we propose a multi-task learning strategy with a self-supervised learning objective to enhance HopGNN. We conduct extensive experiments on 12 benchmark datasets in a wide range of domains, scales, and smoothness of graphs. Experimental results show that our methods achieve superior performance while maintaining high scalability and efficiency. The code is at https://github.com/JC-202/HopGNN.

Poster
Qi Xu · Yaxin Li · Jiangrong Shen · Jian K. Liu · Huajin Tang · Gang Pan

[ West Building Exhibit Halls ABC ]

Spiking neural networks (SNNs) are well known as the brain-inspired models with high computing efficiency, due to a key component that they utilize spikes as information units, close to the biological neural systems. Although spiking based models are energy efficient by taking advantage of discrete spike signals, their performance is limited by current network structures and their training methods. As discrete signals, typical SNNs cannot apply the gradient descent rules directly into parameters adjustment as artificial neural networks (ANNs). Aiming at this limitation, here we propose a novel method of constructing deep SNN models with knowledge distillation (KD) that uses ANN as teacher model and SNN as student model. Through ANN-SNN joint training algorithm, the student SNN model can learn rich feature information from the teacher ANN model through the KD method, yet it avoids training SNN from scratch when communicating with non-differentiable spikes. Our method can not only build a more efficient deep spiking structure feasibly and reasonably, but use few time steps to train whole model compared to direct training or ANN to SNN methods. More importantly, it has a superb ability of noise immunity for various types of artificial noises and natural signals. The proposed novel method …

Poster
Tong Bu · Jianhao Ding · Zecheng Hao · Zhaofei Yu

[ West Building Exhibit Halls ABC ]

Spiking Neural Networks (SNNs) have attracted significant attention due to their energy-efficient properties and potential application on neuromorphic hardware. State-of-the-art SNNs are typically composed of simple Leaky Integrate-and-Fire (LIF) neurons and have become comparable to ANNs in image classification tasks on large-scale datasets. However, the robustness of these deep SNNs has not yet been fully uncovered. In this paper, we first experimentally observe that layers in these SNNs mostly communicate by rate coding. Based on this rate coding property, we develop a novel rate coding SNN-specified attack method, Rate Gradient Approximation Attack (RGA). We generalize the RGA attack to SNNs composed of LIF neurons with different leaky parameters and input encoding by designing surrogate gradients. In addition, we develop the time-extended enhancement to generate more effective adversarial examples. The experiment results indicate that our proposed RGA attack is more effective than the previous attack and is less sensitive to neuron hyperparameters. We also conclude from the experiment that rate-coded SNN composed of LIF neurons is not secure, which calls for exploring training methods for SNNs composed of complex neurons and other neuronal codings. Code is available at https://github.com/putshua/SNNattackRGA

Poster
Pavan Kumar Anasosalu Vasu · James Gabriel · Jeff Zhu · Oncel Tuzel · Anurag Ranjan

[ West Building Exhibit Halls ABC ]

Efficient neural network backbones for mobile devices are often optimized for metrics such as FLOPs or parameter count. However, these metrics may not correlate well with latency of the network when deployed on a mobile device. Therefore, we perform extensive analysis of different metrics by deploying several mobile-friendly networks on a mobile device. We identify and analyze architectural and optimization bottlenecks in recent efficient neural networks and provide ways to mitigate these bottlenecks. To this end, we design an efficient backbone MobileOne, with variants achieving an inference time under 1 ms on an iPhone12 with 75.9% top-1 accuracy on ImageNet. We show that MobileOne achieves state-of-the-art performance within the efficient architectures while being many times faster on mobile. Our best model obtains similar performance on ImageNet as MobileFormer while being 38× faster. Our model obtains 2.3% better top-1 accuracy on ImageNet than EfficientNet at similar latency. Furthermore, we show that our model generalizes to multiple tasks -- image classification, object detection, and semantic segmentation with significant improvements in latency and accuracy as compared to existing efficient architectures when deployed on a mobile device.

Poster
Lingjing Kong · Martin Q. Ma · Guangyi Chen · Eric P. Xing · Yuejie Chi · Louis-Philippe Morency · Kun Zhang

[ West Building Exhibit Halls ABC ]

Masked autoencoder (MAE), a simple and effective self-supervised learning framework based on the reconstruction of masked image regions, has recently achieved prominent success in a variety of vision tasks. Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking. In this work, we formally characterize and justify existing empirical insights and provide theoretical guarantees of MAE. We formulate the underlying data-generating process as a hierarchical latent variable model, and show that under reasonable assumptions, MAE provably identifies a set of latent variables in the hierarchical model, explaining why MAE can extract high-level information from pixels. Further, we show how key hyperparameters in MAE (the masking ratio and the patch size) determine which true latent variables to be recovered, therefore influencing the level of semantic information in the representation. Specifically, extremely large or small masking ratios inevitably lead to low-level representations. Our theory offers coherent explanations of existing empirical observations and provides insights for potential empirical improvements and fundamental limitations of the masked-reconstruction paradigm. We conduct extensive experiments to validate our theoretical insights.

Poster
Geon Yeong Park · Sangmin Lee · Sang Wan Lee · Jong Chul Ye

[ West Building Exhibit Halls ABC ]

Neural networks are often biased to spuriously correlated features that provide misleading statistical evidence that does not generalize. This raises an interesting question: “Does an optimal unbiased functional subnetwork exist in a severely biased network? If so, how to extract such subnetwork?” While empirical evidence has been accumulated about the existence of such unbiased subnetworks, these observations are mainly based on the guidance of ground-truth unbiased samples. Thus, it is unexplored how to discover the optimal subnetworks with biased training datasets in practice. To address this, here we first present our theoretical insight that alerts potential limitations of existing algorithms in exploring unbiased subnetworks in the presence of strong spurious correlations. We then further elucidate the importance of bias-conflicting samples on structure learning. Motivated by these observations, we propose a Debiased Contrastive Weight Pruning (DCWP) algorithm, which probes unbiased subnetworks without expensive group annotations. Experimental results demonstrate that our approach significantly outperforms state-of-the-art debiasing methods despite its considerable reduction in the number of parameters.

Poster
Ivan Koryakovskiy · Alexandra Yakovleva · Valentin Buchnev · Temur Isaev · Gleb Odinokikh

[ West Building Exhibit Halls ABC ]

Neural network quantization is a popular approach for model compression. Modern hardware supports quantization in mixed-precision mode, which allows for greater compression rates but adds the challenging task of searching for the optimal bit width. The majority of existing searchers find a single mixed-precision architecture. To select an architecture that is suitable in terms of performance and resource consumption, one has to restart searching multiple times. We focus on a specific class of methods that find tensor bit width using gradient-based optimization. First, we theoretically derive several methods that were empirically proposed earlier. Second, we present a novel One-Shot method that finds a diverse set of Pareto-front architectures in O(1) time. For large models, the proposed method is 5 times more efficient than existing methods. We verify the method on two classification and super-resolution models and show above 0.93 correlation score between the predicted and actual model performance. The Pareto-front architecture selection is straightforward and takes only 20 to 40 supernet evaluations, which is the new state-of-the-art result to the best of our knowledge.

Poster
Yuexiao Ma · Huixia Li · Xiawu Zheng · Xuefeng Xiao · Rui Wang · Shilei Wen · Xin Pan · Fei Chao · Rongrong Ji

[ West Building Exhibit Halls ABC ]

Post-training quantization (PTQ) is widely regarded as one of the most efficient compression methods practically, benefitting from its data privacy and low computation costs. We argue that an overlooked problem of oscillation is in the PTQ methods. In this paper, we take the initiative to explore and present a theoretical proof to explain why such a problem is essential in PTQ. And then, we try to solve this problem by introducing a principled and generalized framework theoretically. In particular, we first formulate the oscillation in PTQ and prove the problem is caused by the difference in module capacity. To this end, we define the module capacity (ModCap) under data-dependent and data-free scenarios, where the differentials between adjacent modules are used to measure the degree of oscillation. The problem is then solved by selecting top-k differentials, in which the corresponding modules are jointly optimized and quantized. Extensive experiments demonstrate that our method successfully reduces the performance drop and is generalized to different neural networks and PTQ methods. For example, with 2/4 bit ResNet-50 quantization, our method surpasses the previous state-of-the-art method by 1.9%. It becomes more significant on small model quantization, e.g. surpasses BRECQ method by 6.61% on MobileNetV2*0.5.

Poster
Biao Qian · Yang Wang · Richang Hong · Meng Wang

[ West Building Exhibit Halls ABC ]

Data-free quantization (DFQ) recovers the performance of quantized network (Q) without the original data, but generates the fake sample via a generator (G) by learning from full-precision network (P), which, however, is totally independent of Q, overlooking the adaptability of the knowledge from generated samples, i.e., informative or not to the learning process of Q, resulting into the overflow of generalization error. Building on this, several critical questions -- how to measure the sample adaptability to Q under varied bit-width scenarios? whether the largest adaptability is the best? how to generate the samples with adaptive adaptability to improve Q’s generalization? To answer the above questions, in this paper, we propose an Adaptive Data-Free Quantization (AdaDFQ) method, which revisits DFQ from a zero-sum game perspective upon the sample adaptability between two players -- a generator and a quantized network. Following this viewpoint, we further define the disagreement and agreement samples to form two boundaries, where the margin between two boundaries is optimized to adaptively regulate the adaptability of generated samples to Q, so as to address the over-and-under fitting issues. Our AdaDFQ reveals: 1) the largest adaptability is NOT the best for sample generation to benefit Q’s generalization; 2) the knowledge …

Poster
Zheng Xu · Maxwell Collins · Yuxiao Wang · Liviu Panait · Sewoong Oh · Sean Augenstein · Ting Liu · Florian Schroff · H. Brendan McMahan

[ West Building Exhibit Halls ABC ]

Small on-device models have been successfully trained with user-level differential privacy (DP) for next word prediction and image classification tasks in the past. However, existing methods can fail when directly applied to learn embedding models using supervised training data with a large class space. To achieve user-level DP for large image-to-embedding feature extractors, we propose DP-FedEmb, a variant of federated learning algorithms with per-user sensitivity control and noise addition, to train from user-partitioned data centralized in datacenter. DP-FedEmb combines virtual clients, partial aggregation, private local fine-tuning, and public pretraining to achieve strong privacy utility trade-offs. We apply DP-FedEmb to train image embedding models for faces, landmarks and natural species, and demonstrate its superior utility under same privacy budget on benchmark datasets DigiFace, GLD and iNaturalist. We further illustrate it is possible to achieve strong user-level DP guarantees of epsilon < 2 while controlling the utility drop within 5%, when millions of users can participate in training.

Poster
Matthew L. Olson · Shusen Liu · Rushil Anirudh · Jayaraman J. Thiagarajan · Peer-Timo Bremer · Weng-Keen Wong

[ West Building Exhibit Halls ABC ]

Generative Adversarial Networks (GANs) are notoriously difficult to train especially for complex distributions and with limited data. This has driven the need for interpretable tools to audit trained networks, for example, to identify biases or ensure fairness. Existing GAN audit tools are restricted to coarse-grained, model-data comparisons based on summary statistics such as FID or recall. In this paper, we propose an alternative approach that compares a newly developed GAN against a prior baseline. To this end, we introduce Cross-GAN Auditing (xGA) that, given an established “reference” GAN and a newly proposed “client” GAN, jointly identifies semantic attributes that are either common across both GANs, novel to the client GAN, or missing from the client GAN. This provides both users and model developers an intuitive assessment of similarity and differences between GANs. We introduce novel metrics to evaluate attribute-based GAN auditing approaches and use these metrics to demonstrate quantitatively that xGA outperforms baseline approaches. We also include qualitative results that illustrate the common, novel and missing attributes identified by xGA from GANs trained on a variety of image datasets.

Poster
Austin Xu · Mariya I. Vasileva · Achal Dave · Arjun Seshadri

[ West Building Exhibit Halls ABC ]

Recent work leverages the expressive power of genera- tive adversarial networks (GANs) to generate labeled syn- thetic datasets. These dataset generation methods often require new annotations of synthetic images, which forces practitioners to seek out annotators, curate a set of synthetic images, and ensure the quality of generated labels. We in- troduce the HandsOff framework, a technique capable of producing an unlimited number of synthetic images and cor- responding labels after being trained on less than 50 pre- existing labeled images. Our framework avoids the practi- cal drawbacks of prior work by unifying the field of GAN in- version with dataset generation. We generate datasets with rich pixel-wise labels in multiple challenging domains such as faces, cars, full-body human poses, and urban driving scenes. Our method achieves state-of-the-art performance in semantic segmentation, keypoint detection, and depth es- timation compared to prior dataset generation approaches and transfer learning baselines. We additionally showcase its ability to address broad challenges in model develop- ment which stem from fixed, hand-annotated datasets, such as the long-tail problem in semantic segmentation. Project page: austinxu87.github.io/handsoff.

Poster
Simone Barattin · Christos Tzelepis · Ioannis Patras · Nicu Sebe

[ West Building Exhibit Halls ABC ]

This work addresses the problem of anonymizing the identity of faces in a dataset of images, such that the privacy of those depicted is not violated, while at the same time the dataset is useful for downstream task such as for training machine learning models. To the best of our knowledge, we are the first to explicitly address this issue and deal with two major drawbacks of the existing state-of-the-art approaches, namely that they (i) require the costly training of additional, purpose-trained neural networks, and/or (ii) fail to retain the facial attributes of the original images in the anonymized counterparts, the preservation of which is of paramount importance for their use in downstream tasks. We accordingly present a task-agnostic anonymization procedure that directly optimises the images’ latent representation in the latent space of a pre-trained GAN. By optimizing the latent codes directly, we ensure both that the identity is of a desired distance away from the original (with an identity obfuscation loss), whilst preserving the facial attributes (using a novel feature-matching loss in FaRL’s deep feature space). We demonstrate through a series of both qualitative and quantitative experiments that our method is capable of anonymizing the identity of the images …

Poster
Mert Bülent Sarıyıldız · Karteek Alahari · Diane Larlus · Yannis Kalantidis

[ West Building Exhibit Halls ABC ]

Recent image generation models such as Stable Diffusion have exhibited an impressive ability to generate fairly realistic images starting from a simple text prompt. Could such models render real images obsolete for training image prediction models? In this paper, we answer part of this provocative question by investigating the need for real images when training models for ImageNet classification. Provided only with the class names that have been used to build the dataset, we explore the ability of Stable Diffusion to generate synthetic clones of ImageNet and measure how useful these are for training classification models from scratch. We show that with minimal and class-agnostic prompt engineering, ImageNet clones are able to close a large part of the gap between models produced by synthetic images and models trained with real images, for the several standard classification benchmarks that we consider in this study. More importantly, we show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer. Project page: https://europe.naverlabs.com/imagenet-sd

Poster
Hui Lv · Zhongqi Yue · Qianru Sun · Bin Luo · Zhen Cui · Hanwang Zhang

[ West Building Exhibit Halls ABC ]

Weakly Supervised Video Anomaly Detection (WSVAD) is challenging because the binary anomaly label is only given on the video level, but the output requires snippet-level predictions. So, Multiple Instance Learning (MIL) is prevailing in WSVAD. However, MIL is notoriously known to suffer from many false alarms because the snippet-level detector is easily biased towards the abnormal snippets with simple context, confused by the normality with the same bias, and missing the anomaly with a different pattern. To this end, we propose a new MIL framework: Unbiased MIL (UMIL), to learn unbiased anomaly features that improve WSVAD. At each MIL training iteration, we use the current detector to divide the samples into two groups with different context biases: the most confident abnormal/normal snippets and the rest ambiguous ones. Then, by seeking the invariant features across the two sample groups, we can remove the variant context biases. Extensive experiments on benchmarks UCF-Crime and TAD demonstrate the effectiveness of our UMIL. Our code is provided at https://github.com/ktr-hubrt/UMIL.

Poster
Yue Wang · Jinlong Peng · Jiangning Zhang · Ran Yi · Yabiao Wang · Chengjie Wang

[ West Building Exhibit Halls ABC ]

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code at github.com/nomewang/M3DM.

Poster
Jiaxu Miao · Zongxin Yang · Leilei Fan · Yi Yang

[ West Building Exhibit Halls ABC ]

Federated Learning (FL) is a distributed learning paradigm that collaboratively learns a global model across multiple clients with data privacy-preserving. Although many FL algorithms have been proposed for classification tasks, few works focus on more challenging semantic seg-mentation tasks, especially in the class-heterogeneous FL situation. Compared with classification, the issues from heterogeneous FL for semantic segmentation are more severe: (1) Due to the non-IID distribution, different clients may contain inconsistent foreground-background classes, resulting in divergent local updates. (2) Class-heterogeneity for complex dense prediction tasks makes the local optimum of clients farther from the global optimum. In this work, we propose FedSeg, a basic federated learning approach for class-heterogeneous semantic segmentation. We first propose a simple but strong modified cross-entropy loss to correct the local optimization and address the foreground-background inconsistency problem. Based on it, we introduce pixel-level contrastive learning to enforce local pixel embeddings belonging to the global semantic space. Extensive experiments on four semantic segmentation benchmarks (Cityscapes, CamVID, PascalVOC and ADE20k) demonstrate the effectiveness of our FedSeg. We hope this work will attract more attention from the FL community to the challenging semantic segmentation federated learning.

Poster
Andrey Zhmoginov · Mark Sandler · Nolan Miller · Gus Kristiansen · Max Vladymyrov

[ West Building Exhibit Halls ABC ]

Decentralized learning with private data is a central problem in machine learning. We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn from each other, without having to share their data, weights or weight updates. Our approach is communication efficient, utilizes an unlabeled public dataset and uses multiple auxiliary heads for each client, greatly improving training efficiency in the case of heterogeneous data. This approach allows individual models to preserve and enhance performance on their private tasks while also dramatically improving their performance on the global aggregated data distribution. We study the effects of data and model architecture heterogeneity and the impact of the underlying communication graph topology on learning efficiency and show that our agents can significantly improve their performance compared to learning in isolation.

Poster
Chun-Mei Feng · Bangjun Li · Xinxing Xu · Yong Liu · Huazhu Fu · Wangmeng Zuo

[ West Building Exhibit Halls ABC ]

Federated Magnetic Resonance Imaging (MRI) reconstruction enables multiple hospitals to collaborate distributedly without aggregating local data, thereby protecting patient privacy. However, the data heterogeneity caused by different MRI protocols, insufficient local training data, and limited communication bandwidth inevitably impair global model convergence and updating. In this paper, we propose a new algorithm, FedPR, to learn federated visual prompts in the null space of global prompt for MRI reconstruction. FedPR is a new federated paradigm that adopts a powerful pre-trained model while only learning and communicating the prompts with few learnable parameters, thereby significantly reducing communication costs and achieving competitive performance on limited local data. Moreover, to deal with catastrophic forgetting caused by data heterogeneity, FedPR also updates efficient federated visual prompts that project the local prompts into an approximate null space of the global prompt, thereby suppressing the interference of gradients on the server performance. Extensive experiments on federated MRI show that FedPR significantly outperforms state-of-the-art FL algorithms with < 6% of communication costs when given the limited amount of local data.

Poster
Jian-hui Duan · Wenzhong Li · Derun Zou · Ruichen Li · Sanglu Lu

[ West Building Exhibit Halls ABC ]

Federated learning has emerged as a promising distributed machine learning paradigm to preserve data privacy. One of the fundamental challenges of federated learning is that data samples across clients are usually not independent and identically distributed (non-IID), leading to slow convergence and severe performance drop of the aggregated global model. To facilitate model aggregation on non-IID data, it is desirable to infer the unknown global distributions without violating privacy protection policy. In this paper, we propose a novel data-agnostic distribution fusion based model aggregation method called FedFusion to optimize federated learning with non-IID local datasets, based on which the heterogeneous clients’ data distributions can be represented by a global distribution of several virtual fusion components with different parameters and weights. We develop a Variational AutoEncoder (VAE) method to learn the optimal parameters of the distribution fusion components based on limited statistical information extracted from the local models, and apply the derived distribution fusion model to optimize federated model aggregation with non-IID data. Extensive experiments based on various federated learning scenarios with real-world datasets show that FedFusion achieves significant performance improvement compared to the state-of-the-art.

Poster
Nurbek Tastan · Karthik Nandakumar

[ West Building Exhibit Halls ABC ]

Large volumes of data required to train accurate deep neural networks (DNNs) are seldom available with any single entity. Often, privacy concerns and stringent data regulations prevent entities from sharing data with each other or with a third-party learning service provider. While cross-silo federated learning (FL) allows collaborative learning of large DNNs without sharing the data itself, most existing cross-silo FL algorithms have an unacceptable utility-privacy trade-off. In this work, we propose a framework called Confidential and Private Decentralized (CaPriDe) learning, which optimally leverages the power of fully homomorphic encryption (FHE) to enable collaborative learning without compromising on the confidentiality and privacy of data. In CaPriDe learning, participating entities release their private data in an encrypted form allowing other participants to perform inference in the encrypted domain. The crux of CaPriDe learning is mutual knowledge distillation between multiple local models through a novel distillation loss, which is an approximation of the Kullback-Leibler (KL) divergence between the local predictions and encrypted inferences of other participants on the same data that can be computed in the encrypted domain. Extensive experiments on three datasets show that CaPriDe learning can improve the accuracy of local models without any central coordination, provide strong guarantees of …

Poster
Dongze Li · Wei Wang · Kang Zhao · Jing Dong · Tieniu Tan

[ West Building Exhibit Halls ABC ]

This work presents RiDDLE, short for Reversible and Diversified De-identification with Latent Encryptor, to protect the identity information of people from being misused. Built upon a pre-learned StyleGAN2 generator, RiDDLE manages to encrypt and decrypt the facial identity within the latent space. The design of RiDDLE has three appealing properties. First, the encryption process is cipher-guided and hence allows diverse anonymization using different passwords. Second, the true identity can only be decrypted with the correct password, otherwise the system will produce another de-identified face to maintain the privacy. Third, both encryption and decryption share an efficient implementation, benefiting from a carefully tailored lightweight encryptor. Comparisons with existing alternatives confirm that our approach accomplishes the de-identification task with better quality, higher diversity, and stronger reversibility. We further demonstrate the effectiveness of RiDDLE in anonymizing videos. Code and models will be made publicly available.

Poster
Mingjun Xu · Lingyun Qin · Weijie Chen · Shiliang Pu · Lei Zhang

[ West Building Exhibit Halls ABC ]

Domain shift degrades the performance of object detection models in practical applications. To alleviate the influence of domain shift, plenty of previous work try to decouple and learn the domain-invariant (common) features from source domains via domain adversarial learning (DAL). However, inspired by causal mechanisms, we find that previous methods ignore the implicit insignificant non-causal factors hidden in the common features. This is mainly due to the single-view nature of DAL. In this work, we present an idea to remove non-causal factors from common features by multi-view adversarial training on source domains, because we observe that such insignificant non-causal factors may still be significant in other latent spaces (views) due to the multi-mode structure of data. To summarize, we propose a Multi-view Adversarial Discriminator (MAD) based domain generalization model, consisting of a Spurious Correlations Generator (SCG) that increases the diversity of source domain by random augmentation and a Multi-View Domain Classifier (MVDC) that maps features to multiple latent spaces, such that the non-causal factors are removed and the domain-invariant features are purified. Extensive experiments on six benchmarks show our MAD obtains state-of-the-art performance.

Poster
Mingjie Sun · Zico Kolter

[ West Building Exhibit Halls ABC ]

Backdoor inversion, the process of finding a backdoor trigger inserted into a machine learning model, has become the pillar of many backdoor detection and defense methods. Previous works on backdoor inversion often recover the backdoor through an optimization process to flip a support set of clean images into the target class. However, it is rarely studied and understood how large this support set should be to recover a successful backdoor. In this work, we show that one can reliably recover the backdoor trigger with as few as a single image. Specifically, we propose the SmoothInv method, which first constructs a robust smoothed version of the backdoored classifier and then performs guided image synthesis towards the target class to reveal the backdoor pattern. SmoothInv requires neither an explicit modeling of the backdoor via a mask variable, nor any complex regularization schemes, which has become the standard practice in backdoor inversion methods. We perform both quantitaive and qualitative study on backdoored classifiers from previous published backdoor attacks. We demonstrate that compared to existing methods, SmoothInv is able to recover successful backdoors from single images, while maintaining high fidelity to the original backdoor. We also show how we identify the target backdoored class …

Poster
Yiming Chen · Jinyu Tian · Xiangyu Chen · Jiantao Zhou

[ West Building Exhibit Halls ABC ]

Since training a deep neural network (DNN) is costly, the well-trained deep models can be regarded as valuable intellectual property (IP) assets. The IP protection associated with deep models has been receiving increasing attentions in recent years. Passport-based method, which replaces normalization layers with passport layers, has been one of the few protection solutions that are claimed to be secure against advanced attacks. In this work, we tackle the issue of evaluating the security of passport-based IP protection methods. We propose a novel and effective ambiguity attack against passport-based method, capable of successfully forging multiple valid passports with a small training dataset. This is accomplished by inserting a specially designed accessory block ahead of the passport parameters. Using less than 10% of training data, with the forged passport, the model exhibits almost indistinguishable performance difference (less than 2%) compared with that of the authorized passport. In addition, it is shown that our attack strategy can be readily generalized to attack other IP protection methods based on watermark embedding. Directions for potential remedy solutions are also given.

Poster
Wenbo Jiang · Hongwei Li · Guowen Xu · Tianwei Zhang

[ West Building Exhibit Halls ABC ]

Backdoor attacks against neural networks have been intensively investigated, where the adversary compromises the integrity of the victim model, causing it to make wrong predictions for inference samples containing a specific trigger. To make the trigger more imperceptible and human-unnoticeable, a variety of stealthy backdoor attacks have been proposed, some works employ imperceptible perturbations as the backdoor triggers, which restrict the pixel differences of the triggered image and clean image. Some works use special image styles (e.g., reflection, Instagram filter) as the backdoor triggers. However, these attacks sacrifice the robustness, and can be easily defeated by common preprocessing-based defenses. This paper presents a novel color backdoor attack, which can exhibit robustness and stealthiness at the same time. The key insight of our attack is to apply a uniform color space shift for all pixels as the trigger. This global feature is robust to image transformation operations and the triggered samples maintain natural-looking. To find the optimal trigger, we first define naturalness restrictions through the metrics of PSNR, SSIM and LPIPS. Then we employ the Particle Swarm Optimization (PSO) algorithm to search for the optimal trigger that can achieve high attack effectiveness and robustness while satisfying the restrictions. Extensive experiments demonstrate …

Poster
Beini Xie · Heng Chang · Ziwei Zhang · Xin Wang · Daixin Wang · Zhiqiang Zhang · Rex Ying · Wenwu Zhu

[ West Building Exhibit Halls ABC ]

Graph Neural Networks (GNNs) obtain tremendous success in modeling relational data. Still, they are prone to adversarial attacks, which are massive threats to applying GNNs to risk-sensitive domains. Existing defensive methods neither guarantee performance facing new data/tasks or adversarial attacks nor provide insights to understand GNN robustness from an architectural perspective. Neural Architecture Search (NAS) has the potential to solve this problem by automating GNN architecture designs. Nevertheless, current graph NAS approaches lack robust design and are vulnerable to adversarial attacks. To tackle these challenges, we propose a novel Robust Neural Architecture search framework for GNNs (G-RNA). Specifically, we design a robust search space for the message-passing mechanism by adding graph structure mask operations into the search space, which comprises various defensive operation candidates and allows us to search for defensive GNNs. Furthermore, we define a robustness metric to guide the search procedure, which helps to filter robust architectures. In this way, G-RNA helps understand GNN robustness from an architectural perspective and effectively searches for optimal adversarial robust GNNs. Extensive experimental results on benchmark datasets show that G-RNA significantly outperforms manually designed robust GNNs and vanilla graph NAS baselines by 12.1% to 23.4% under adversarial attacks.

Poster
Anqi Zhao · Tong Chu · Yahao Liu · Wen Li · Jingjing Li · Lixin Duan

[ West Building Exhibit Halls ABC ]

In this work, we study the black-box targeted attack problem from the model discrepancy perspective. On the theoretical side, we present a generalization error bound for black-box targeted attacks, which gives a rigorous theoretical analysis for guaranteeing the success of the attack. We reveal that the attack error on a target model mainly depends on empirical attack error on the substitute model and the maximum model discrepancy among substitute models. On the algorithmic side, we derive a new algorithm for black-box targeted attacks based on our theoretical analysis, in which we additionally minimize the maximum model discrepancy(M3D) of the substitute models when training the generator to generate adversarial examples. In this way, our model is capable of crafting highly transferable adversarial examples that are robust to the model variation, thus improving the success rate for attacking the black-box model. We conduct extensive experiments on the ImageNet dataset with different classification models, and our proposed approach outperforms existing state-of-the-art methods by a significant margin.

Poster
Kaisheng Liang · Bin Xiao

[ West Building Exhibit Halls ABC ]

Adversarial attacks can mislead deep neural networks (DNNs) by adding imperceptible perturbations to benign examples. The attack transferability enables adversarial examples to attack black-box DNNs with unknown architectures or parameters, which poses threats to many real-world applications. We find that existing transferable attacks do not distinguish between style and content features during optimization, limiting their attack transferability. To improve attack transferability, we propose a novel attack method called style-less perturbation (StyLess). Specifically, instead of using a vanilla network as the surrogate model, we advocate using stylized networks, which encode different style features by perturbing an adaptive instance normalization. Our method can prevent adversarial examples from using non-robust style features and help generate transferable perturbations. Comprehensive experiments show that our method can significantly improve the transferability of adversarial examples. Furthermore, our approach is generic and can outperform state-of-the-art transferable attacks when combined with other attack techniques.

Poster
Jianping Zhang · Jen-tse Huang · Wenxuan Wang · Yichen Li · Weibin Wu · Xiaosen Wang · Yuxin Su · Michael R. Lyu

[ West Building Exhibit Halls ABC ]

Deep neural networks have achieved unprecedented success on diverse vision tasks. However, they are vulnerable to adversarial noise that is imperceptible to humans. This phenomenon negatively affects their deployment in real-world scenarios, especially security-related ones. To evaluate the robustness of a target model in practice, transfer-based attacks craft adversarial samples with a local model and have attracted increasing attention from researchers due to their high efficiency. The state-of-the-art transfer-based attacks are generally based on data augmentation, which typically augments multiple training images from a linear path when learning adversarial samples. However, such methods selected the image augmentation path heuristically and may augment images that are semantics-inconsistent with the target images, which harms the transferability of the generated adversarial samples. To overcome the pitfall, we propose the Path-Augmented Method (PAM). Specifically, PAM first constructs a candidate augmentation path pool. It then settles the employed augmentation paths during adversarial sample generation with greedy search. Furthermore, to avoid augmenting semantics-inconsistent images, we train a Semantics Predictor (SP) to constrain the length of the augmentation path. Extensive experiments confirm that PAM can achieve an improvement of over 4.8% on average compared with the state-of-the-art baselines in terms of the attack success rates.

Poster
Woo Jae Kim · Yoonki Cho · Junsik Jung · Sung-Eui Yoon

[ West Building Exhibit Halls ABC ]

Deep neural networks are susceptible to adversarial attacks due to the accumulation of perturbations in the feature level, and numerous works have boosted model robustness by deactivating the non-robust feature activations that cause model mispredictions. However, we claim that these malicious activations still contain discriminative cues and that with recalibration, they can capture additional useful information for correct model predictions. To this end, we propose a novel, easy-to-plugin approach named Feature Separation and Recalibration (FSR) that recalibrates the malicious, non-robust activations for more robust feature maps through Separation and Recalibration. The Separation part disentangles the input feature map into the robust feature with activations that help the model make correct predictions and the non-robust feature with activations that are responsible for model mispredictions upon adversarial attack. The Recalibration part then adjusts the non-robust activations to restore the potentially useful cues for model predictions. Extensive experiments verify the superiority of FSR compared to traditional deactivation techniques and demonstrate that it improves the robustness of existing adversarial training methods by up to 8.57% with small computational overhead. Codes are available at https://github.com/wkim97/FSR.

Poster
Zeming Wei · Yifei Wang · Yiwen Guo · Yisen Wang

[ West Building Exhibit Halls ABC ]

Adversarial training has been widely acknowledged as the most effective method to improve the adversarial robustness against adversarial examples for Deep Neural Networks (DNNs). So far, most existing works focus on enhancing the overall model robustness, treating each class equally in both the training and testing phases. Although revealing the disparity in robustness among classes, few works try to make adversarial training fair at the class level without sacrificing overall robustness. In this paper, we are the first to theoretically and empirically investigate the preference of different classes for adversarial configurations, including perturbation margin, regularization, and weight averaging. Motivated by this, we further propose a Class-wise calibrated Fair Adversarial training framework, named CFA, which customizes specific training configurations for each class automatically. Experiments on benchmark datasets demonstrate that our proposed CFA can improve both overall robustness and fairness notably over other state-of-the-art methods. Code is available at https://github.com/PKU-ML/CFA.

Poster
Shihua Huang · Zhichao Lu · Kalyanmoy Deb · Vishnu Naresh Boddeti

[ West Building Exhibit Halls ABC ]

Efforts to improve the adversarial robustness of convolutional neural networks have primarily focused on developing more effective adversarial training methods. In contrast, little attention was devoted to analyzing the role of architectural elements (e.g., topology, depth, and width) on adversarial robustness. This paper seeks to bridge this gap and present a holistic study on the impact of architectural design on adversarial robustness. We focus on residual networks and consider architecture design at the block level as well as at the network scaling level. In both cases, we first derive insights through systematic experiments. Then we design a robust residual block, dubbed RobustResBlock, and a compound scaling rule, dubbed RobustScaling, to distribute depth and width at the desired FLOP count. Finally, we combine RobustResBlock and RobustScaling and present a portfolio of adversarially robust residual networks, RobustResNets, spanning a broad spectrum of model capacities. Experimental validation across multiple datasets and adversarial attacks demonstrate that RobustResNets consistently outperform both the standard WRNs and other existing robust architectures, achieving state-of-the-art AutoAttack robust accuracy 63.7% with 500K external data while being 2× more compact in terms of parameters. The code is available at https://github.com/zhichao-lu/robust-residual-network.

Poster
Zhibo Wang · He Wang · Shuaifan Jin · Wenwen Zhang · Jiahui Hu · Yan Wang · Peng Sun · Wei Yuan · Kaixin Liu · Kui Ren

[ West Building Exhibit Halls ABC ]

Face recognition service providers protect face privacy by extracting compact and discriminative facial features (representations) from images, and storing the facial features for real-time recognition. However, such features can still be exploited to recover the appearance of the original face by building a reconstruction network. Although several privacy-preserving methods have been proposed, the enhancement of face privacy protection is at the expense of accuracy degradation. In this paper, we propose an adversarial features-based face privacy protection (AdvFace) approach to generate privacy-preserving adversarial features, which can disrupt the mapping from adversarial features to facial images to defend against reconstruction attacks. To this end, we design a shadow model which simulates the attackers’ behavior to capture the mapping function from facial features to images and generate adversarial latent noise to disrupt the mapping. The adversarial features rather than the original features are stored in the server’s database to prevent leaked features from exposing facial information. Moreover, the AdvFace requires no changes to the face recognition network and can be implemented as a privacy-enhancing plugin in deployed face recognition systems. Extensive experimental results demonstrate that AdvFace outperforms the state-of-the-art face privacy-preserving methods in defending against reconstruction attacks while maintaining face recognition accuracy.

Poster
Dong Li · Jiaying Zhu · Menglu Wang · Jiawei Liu · Xueyang Fu · Zheng-Jun Zha

[ West Building Exhibit Halls ABC ]

Digital image authenticity has promoted research on image forgery localization. Although deep learning-based methods achieve remarkable progress, most of them usually suffer from severe feature coupling between the forged and authentic regions. In this work, we propose a two-step Edge-aware Regional Message Passing Controlling strategy to address the above issue. Specifically, the first step is to account for fully exploiting the edge information. It consists of two core designs: context-enhanced graph construction and threshold-adaptive differentiable binarization edge algorithm. The former assembles the global semantic information to distinguish the features between the forged and authentic regions, while the latter stands on the output of the former to provide the learnable edges. In the second step, guided by the learnable edges, a region message passing controller is devised to weaken the message passing between the forged and authentic regions. In this way, our ERMPC is capable of explicitly modeling the inconsistency between the forged and authentic regions and enabling it to perform well on refined forged images. Extensive experiments on several challenging benchmarks show that our method is superior to state-of-the-art image forgery localization methods qualitatively and quantitatively.


Diversity and Inclusion Social Tue 20 Jun 07:00 p.m.  

Jiawei He · Katerina Fragkiadaki · Vikram V. Ramaswamy

Diversity and inclusion are crucial for driving organizational impact in both academia and industry. To foster an environment that respects and cherishes a culture of inclusion and belonging, we propose organizing a social event that connects diversity and inclusion (D&I) initiatives with people attending CVPR. The goal of this event is to raise awareness and build connections among CVPR attendees who are interested in participating in or creating D&I initiatives. We believe that by bringing together organizations such as AI4ALL, Women in Computer Vision, CIFAR, Let’s SOLVE it from Borealis AI, etc., this social event can serve as a bridge between different organizations and promote future collaborations.


Social: How to Negotiate Industry Offers in AI proposal Tue 20 Jun 07:00 p.m.  

Nicole Bannon · Sameer Saddiqi

Join our social event to get the tools, information, and data you need to negotiate your next offer more confidently. Some of the topics we'll cover in a 2 hour period (including 45 mins for Q&A) are: Understanding the fundamentals of compensation in tech (particularly around equity, - bonus structures, etc.), data points for different levels/positions in AI, how to get over your fears of negotiating, how to decide which company / offer is right for you, how to negotiate without counter offers and without knowing "market value", how to respond to pushback from recruiters and other guilt tripping / lowballing / pressure tactics, how to avoid having an offer rescinded, how to negotiate deadline of an offer and walking through a timeline of the negotiation process for a new offer.


Social: AMA with Senior Faculty and Industry Leaders Tue 20 Jun 07:00 p.m.  

Yong Hee Lee

This is a casual networking event for graduate students, faculty members, and industry professionals. There will be standing tables, light food, and drinks provided by the event sponsors. Students will have a chance to connect with fellow graduate students and mentors from various backgrounds, at a variety of stages throughout their careers.


Black in AI Social Tue 20 Jun 07:00 p.m.  

Daniel Ajisafe · Oluwabukola Grace Adegboro · Mennatullah Siam · Salomey Osei · ESTHER ODUNTAN · Samson Kirk-Koffi · Nene Azu · Issam Laradji · Blaise Appolinary

Africa has the second-largest population in the world with around 1.4 billion people as of 2022. With the increasing amount of visual data and the growing rate of its data footprint, the impact of extending Computer Vision research to solving local problems specific to Africa has become an ever-increasing need. This social event aims to bring together a unique community of people who self-identify as Black and/or from African origin or support the Black community at its first gathering in CVPR. Our main goal is to create a platform where Black researchers are comfortable meeting with other people without feeling out-of-place and to enforce a strong connection of like-minded individuals whose main or sub-goals is to empower the African community and Black Computer Vision researchers. This social, therefore, has several aims:

  • Empowering Black and African origin researchers by affirming their sense of belonging to the Computer Vision community specifically in CVPR.
  • Providing mentorship and guidance to young researchers from the Black and African origin community.
  • Allowing both Black and African-origin researchers and their supporters/allies to gather and network within the Computer Vision community.
  • Celebrating African grassroots in AI, especially in the field of Computer Vision.

Social: CV Entrepreneurship – Founders, Freelancers & Friends Tue 20 Jun 07:00 p.m.  

Ankur Kalra · Sarah Andrews · Matthew Flagg

CV Entrepreneurship: Founders, Freelancers & Friends comes to CVPR to help entrepreneurially minded members of the community find mentors, collaborators, and friends! Computer Vision is a vibrant and rapidly expanding field, and many folks are choosing to blaze their own paths outside of the corporate and academic worlds. Entrepreneurship presents its own unique mix of challenges and opportunities. Whether you’re already a business owner looking for others who can relate to your experience, or you aspire to venture out on your own in some way, this is the event for you. Everyone has something to share, and something to learn. Walk away with a few new friends, inspiring ideas, some helpful resources, and enthusiasm toward your own entrepreneurial path. The goal of “Each One, Teach One” is to help members of the community develop curated connections over areas of mutual interest. Whether it’s a specific research technique, how to magnify your impact, or how to accelerate your research experiments, someone at CVPR is passionate about sharing their point of view on that topic. Come to this event to meet them!

Everyone has something to share and something to learn. Walk away with a few new friends, some of whom are experts in areas you are curious about, and some of whom are curious about your areas of expertise.